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Abstract

In the past twenty years, damped trend exponential smoothing has performed well in numerous

empirical studies and is now well established as an accurate forecasting method. The original

motivation for this method was intuitively appealing, but said very little about why or when

it provided an optimal approach. The aim of this paper is to provide a theoretical rationale

for the damped trend method based on Brown’s original thinking about the form of underlying

models for exponential smoothing. We develop a random coefficient state-space model for

which damped trend smoothing provides an optimal approach, and within which the damping

parameter can be interpreted directly as a measure of the persistence of the linear trend.
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1 Introduction

In a series of three papers (Gardner and McKenzie, 1985, 1988, 1989), we developed new

versions of the Holt-Winters methods of exponential smoothing that damp the trend as the

forecast horizon increases. Since those papers appeared, damped trend exponential smoothing

has performed well in numerous empirical studies, as discussed in Gardner (2006). In a review

of evidence-based forecasting, Armstrong (2006) recommended the damped trend as a well

established forecasting method that should improve accuracy in practical applications. In a

review of forecasting in operational research, Fildes et al. (2008) concluded that the damped

trend can “reasonably claim to be a benchmark forecasting method for all others to beat.”

Additional empirical evidence for the M3 competition data (Makridakis and Hibon, 2000) is

given in Hyndman, Koehler, Ord and Snyder (HKOS) (2008), who found that use of the damped

trend method alone compared favourably to model selection via information criteria.

Despite this record of empirical success, we still have no compelling rationale for the damped

trend. Our original approach was pragmatic, based on the findings of the M-competition (Makri-

dakis et al., 1982), which showed that the practice of projecting a straight line trend indefinitely

into the future was often too optimistic (or pessimistic). Thus we added an autoregressive-

damping parameter (φ ) to modify the trend component in Holt’s linear trend method. The

result is a method stationary in first differences, rather than second differences as in the Holt

method. With a strong, consistent trend in the data, we hypothesized that φ would be fitted

at a value near 1, and the forecasts would be very nearly the same as Holt’s; if the data are

extremely noisy or if the trend is erratic, φ would be fitted at a value less than 1 to create a
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damped forecast function. This explanation may be intuitively appealing, but it says nothing

about when trend damping is the optimal forecasting approach.

The aim of this paper is to provide a theoretical rationale for the damped trend based on

Brown’s (1963) original thinking about the form of underlying models for exponential smooth-

ing. His preference was for processes that are thought to be locally constant. Brown argued

that although the parameters of the model may be constant within any local segment of time,

they may change from one segment to the next, and the changes may be sudden or smooth. We

present a new model for the damped trend method that accommodates both types of change.

Interestingly, our interpretation of this model essentially reverses our original thinking on the

use of damped trend forecasting in practice.

2 A Modelling Viewpoint

Our development is based on the class of single source of error (SSOE) state space models

(HKOS). We begin with the model for a linear trend with additive errors:

yt = `t−1 + bt−1 + εt (1)

`t = `t−1 + bt−1 + (1− α)εt (2)

bt = bt−1 + (1− β)εt (3)

where {yt} is the observed series, {`t} is its level and {bt} the gradient of its linear trend. This

model has a single source of error {εt}, and hence the name. We note that what we have to say

here still applies even if we consider models with multiple sources of error. Compared to the

presentation in HKOS, we have written the coefficients of the innovations in the level (2) and

gradient (3) revision equations in a slightly unusual way to simplify some of the results which
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follow. The model (1-3) has a reduced form as the ARIMA(0,2,2):

(1−B)2yt = εt − (α+ β)εt−1 + αεt−2 (4)

The two models are equivalent but the state space expression is easier to interpret, especially

when the parameters take on extreme values. The usual minimum mean square error (MMSE)

forecasts of this model can be generated using the recursive formulae of Holt.

To damp the trend component in (1-3), we incorporate an autoregressive-damping parameter

φ to create another SSOE model:

yt = `t−1 + φbt−1 + εt (5)

`t = `t−1 + φbt−1 + (1− α)εt (6)

bt = φbt−1 + (1− β)εt (7)

This model (5-7) has a reduced form as the ARIMA(1,1,2):

(1− φB)(1−B)yt = εt − (α+ φβ)εt−1 + φαεt−2 (8)

Note that the gradient revision equation (7) is an AR(1) rather than the random walk form

used in (3). Thus, revision equation (7) allows the gradient to change but in a stationary way,

whereas in (3) such changes are non-stationary and the longer-term behaviour is quite different.

In (5-7), we can interpret φ as a direct measure of the persistence of the linear trend. With

φ close to 1, the linear trend is highly persistent, but φ moving away from 1 towards zero

indicates weaker persistence. And, of course, φ = 0 would indicate the complete absence of any

linear trend.

Now we recall Brown’s idea of a locally constant model and apply it to the gradient of

the linear trend. For the model in (1-3), this means that the usual random walk form of the
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gradient revision equation (3) holds for a while, but then the gradient changes to a new value,

and that holds for a while, and then changes again, and so on. Thus, we have runs of the

same linear trend model given by (1-3), but each run ends when the gradient revision equation

(3) restarts with a new gradient. Such behaviour may be modelled by rewriting the gradient

revision equation in the form

bt = Atbt−1 + (1− β)εt (9)

where {At} is a sequence of independent, identically distributed binary random variates with

P (At = 1) = φ and P (At = 0) = (1 − φ). At each time point we have the current linear

trend model with probability φ, or an alternative linear trend model, starting with a new and

unrelated gradient, with probability (1− φ).

At first sight, this is a strange model, but it is easy to see what happens in particular cases.

If we wish to model a strongly persistent trend then φ will be close to 1, and the sequence {At}

will consist of long runs of 1s interrupted by occasional 0s. This yields long runs of a linear

trend model with a similar gradient, one changing smoothly by means of equation (3), but

which can change suddenly, with a small probability (1−φ), to a completely different gradient.

If φ is close to 0 there are long runs of 0’s with occasional 1’s, so the model displays only a

very weak linear trend (if any), with a frequently changing gradient. With φ between 0 and 1

we get a mixture, resulting in different linear trend models operating over shorter time scales,

i.e. low persistence of trend. In passing, we note that the mean length of such runs is given

by φ/(1− φ), which may also be thought of as a way to measure the persistence of trend. We

also note that equation (9) is not the only possible form we could use here. For example, if we

wish to generate a greater level of variation at the gradient change-point, i.e. when At = 0, we

could replace (9) by

bt = Atbt−1 + (1−At)dt + (1− β)εt (10)
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where {dt} is another, independent, white noise source, and we would obtain similar results.

We will use equation (9) here because it is the simplest form.

The new state space model corresponding to the incorporation of the new gradient revision

equation (9) is a random coefficient state space model:

yt = `t−1 +Atbt−1 + εt (11)

`t = `t−1 +Atbt−1 + (1− α∗)εt (12)

bt = Atbt−1 + (1− β∗)εt (13)

whose reduced form is a random coefficient ARIMA(1,1,2):

(1−AtB)(1−B)yt = εt − (α∗ +Atβ
∗)εt−1 +Atα

∗εt−2 (14)

We use (α∗, β∗) here rather than (α, β) in order to emphasise that these coefficients will differ

in our discussion of the two models (5-7) and (11-13), whereas the same value of φ will apply

to both.

Although this random coefficient state space model may appear complex, it is simply a

stochastic mixture of two well known forms. Thus, for example, equation (14) may be rewritten

as

(1−B)2yt = εt − (α∗ + β∗)εt−1 + α∗εt−2 with probability φ (15)

(1−B)yt = εt − α∗εt−1 with probability (1− φ) (16)

In this model, {yt} is generated by the ARIMA(0,2,2) given by (15) or (4), the usual linear

trend model, with probability φ ; but then, with probability (1 − φ), the gradient changes

completely, the generation process switching to the ARIMA(0,1,1) given by (16), the usual

underlying model for simple exponential smoothing. The resulting process is a mixture of the

two.

7



Now, in this model (11-14), it may be shown that the stationary process of first differences,

{(1 − B)yt}, has exactly the same autocorrelation function as a standard ARMA(1,2) with

autoregressive parameter φ, i.e. ρ(k) = φk−2ρ(2) for k ≥ 2. It follows that {yt} can be

generated by a stochastic difference equation of the form:

(1− φB)(1−B)yt = at − θ1at−1 − θ2at−2 (17)

where {at} is a white noise process whose variance and the parameters θ1 and θ2 are complicated

functions of the parameters φ, α∗, β∗ and the variance of the innovation process {εt}. Thus,

the MMSE forecasts of yt defined by equation (17) are the MMSE forecasts of the random

coefficient ARIMA(1,1,2) given by (14), and thus also of our random coefficient state space

model (11-13). Moreover, the MMSE forecasts of (17) are clearly damped trend forecasts.

Hence, to summarize these relationships, the standard damped trend forecasts optimal for

(5-7) are also optimal for a random coefficient state-space model of the form of (11-13), with

the same parameter value, φ, in both, but with different values of α and β in (11-13). The

values of these corresponding parameters in (11-13), α∗ and β∗ say, can be computed from

the parameters of the damped trend model in (5-7), but our intention here is simply to note

that the damped trend forecasts are also optimal for such a more general and broader class of

models. We also argue that such a random coefficient state space model is itself often a good

approximation to the behaviour of practically occurring non-seasonal time series, and that this

is one of the main reasons for the empirical success of the damped trend method.

3 Other Models/Methods

The same discussion and argument will apply in the cases of other similar models that contain

a linear trend component. In particular, we note here two important cases. The first is the
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additive seasonal model (of period n) which, in random coefficient form, is given by

yt = `t−1 +Atbt−1 + St−n + εt (18)

`t = `t−1 +Atbt−1 + St−n + (1− α)εt (19)

bt = Atbt−1 + (1− β)εt (20)

St = St−n + γεt (21)

If the random coefficient At is replaced by the constant value 1 or 0, we obtain models

for which Holt-Winters-type linear trend with additive seasonality, or trend-free seasonality,

forecasting methods respectively are optimal. If we replace At by φ , the damped trend version

(e.g. Gardner and McKenzie,1989) is optimal.

The second model we wish to extend is the linear trend version of the very important

multiplicative-error models of HKOS. It is given by

yt = (`t−1 + bt−1)(1 + εt) (22)

`t = (`t−1 + bt−1)(1 + (1− α)εt) (23)

bt = bt−1 + (1− β)(`t−1 + bt−1)εt (24)

The importance of models of the form of (25-27) lies in the fact that although the driving

innovation terms have variances that are now functions of the level, nevertheless exponential

smoothing methods can be optimal. The random coefficient version of this is given by

yt = (`t−1 +Atbt−1)(1 + εt) (25)

`t = (`t−1 +Atbt−1)(1 + (1− α)εt) (26)

bt = Atbt−1 + (1− β)(`t−1 +Atbt−1)εt (27)

and, for completeness, we note that the reduced random coefficient ARIMA may be written in

the mixture form we have used before, thus:
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with probability φ:

(1−B)2yt = ωt − (α+ β)ωt−1 + αωt−2 where ωt = (`t−1 + bt−1)εt (28)

and, with probability (1− φ):

(1−B)yt = ω′t − αω′t−1 where ω′t = `t−1εt (29)

This form is essentially the same as (15) and (16) except that the innovation process is now

dependent on level.

4 Conclusions

We have developed a model, given by (11-13) or (14) or (15) and (16), for which damped

trend smoothing provides an optimal approach and within which the damping parameter can

be interpreted directly as a measure of the persistence of the linear trend. Developing these

models has lead us to reverse our earlier view that a damped trend is a good approximation

to a linear trend at short lead-times and is better for longer ones because the linearity must

eventually break down. Now, our argument is that the underlying random coefficient linear

trend model is more realistic, i.e. is more often closer to the true process that underlies our

time series, and the linear trend model is simply a good approximation to it for short lead-times.

Technically, we are arguing that it makes more practical sense to model the uncertainty of the

gradient process of our putative linear trend as a random coefficient autoregression (13) rather

than a random walk (3), thus greatly widening the legitimacy of damped trend forecasting.

We see this model as a natural extension of Brown’s (1963) original work. Our aim is to

capture the locally constant nature of the linear trend by means of its gradient which may

change smoothly or suddenly. The random walk form of the gradient revision equation allows
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smooth change very well, but is less successful with occasional, sudden change. Our random

coefficient model accommodates both kinds of change.

Finally, we note that if we assume the random coefficient state space model (11-13) does

indeed generate our observed time series, then damped trend forecasting may be optimal but

the corresponding prediction intervals will be much wider than if we assume the standard

damped trend model of equations (5-7). This is because of the extra variation introduced by

the presence of the random binary coefficient, and may go some way to explaining the often

conservative performance of prediction intervals in this area. This important topic will be

explored elsewhere.
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