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ABSTRACT

This paper-is a critical review of exponential smoothing since the original
work by Brown and Holt in the 1950s. Exponential smoothing is based ona
pragmatic approach to forecasting which is shared in this review. The aim is
to develop state-of-the-art guidelines for appiication of the exponential
smoothing methodology. The first part of the paper discusses the class of
relatively simple models which rely on the Holt-Winters procedure for
seasonal adjustment of the data. Next, we review general exponential

_smoothing (GES), which uses Fourier functions of time to model seasonality.
The research is reviewed according to the following questions. What are the
useful properties of these models? What parameters should be used? How
should the models be initialized ? After the review of model-building, we turn
to problems in the maintenance of forecasting systems based on exponential
smoothing. Topics in the maintenance area include the use of quality control
models to detect bias in the forecast errors, adaptive parameters to improve
the response to structural changes .in the time series, and two-stage
forecasting, whereby we use a model of the errors or some other model 6f the
data to improve our initial forecasts. Some-of the major conclusions: the
parameter ranges and starting values typically used in practice are arbitrary
and may detract from accuracy. The empirical evidence favours Holt's model
for trends over that of Brown. A linear trend should be damped at long
horizons. The empirical evidence favours the Holt-Winters approach to
seasonal data over GES. It is difficult to justify GES in standard form—the
equivalent ARIMA medel is simpler and more efficient. The cumulative sum
of the errors appears to be the most practical forecast monitoring device.
There is no evidence that adaptive parameters improve forecast accuracy. in
fact, the reverse may be true.
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Exponential smoothing methods are widely used in industry. Their popularity is due to several
practical considerations in short-range forecasting. Model formulations are relatively simple.
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Exhibit 1. Forecast profiles from exponential smoothing
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Symbol Definition

o Smoothing parameter for the level of the series

Y Smoothing parameter for trend

é Smoothing parameter for seasonal factors

] Trend modification parameter

B Discount factor, 0 < fi<1

S, Smoothed level of the series, computed after X, is observed. Also the expected value of the data at the

end of period ¢ in some models

T, Smoothed trend at the end of period ¢. Can be additive (linear) or multiplicative
~E-* 7+ Smoothed seasonal index orfactor at the -end of period 7. Can be additive or multiplicative
S, Double-smoothed average (from an application of simple exponential smoothing to S,)
X, Observed value of the time serics in period ¢
m Number of periods in the forecast lead-time
P Number of periods in the seasonal cycle
X.(m) Forecast for m periods ahead from origin ¢

One-period-ahead forecast error, e, = X, — X,_ (1). Note that e,(m) should be used for other
- forecast origins -

T

Exhibit 2. Standard notation for exponential smoothing

Thus model components and parameters have some intuitive meaning to the user. Only limited
data storage and computational effort are required. Tracking signal tests for forecast control are
casy to apply.

Perhaps the most important reason for the popularlty of exponential smoothing is the
surprising accuracy that can be obtained with minima! effort in model identification. Two large-
-scale empirical studies have found little difference in forecast accuracy between exponential
smoothing and ARIMA models identified by the Box-Jenkins (1976) methodology—see
Makridakis and Hibon (1979) and Makridakis et al. (1982).

Despite the large body of research on exponential smoothing, there has never been a
comprehensive review of the subject. This paper reviews the rescarch since the original work by
Brown and Holt in the 1950s. Sections 1-3 discuss the class of relatively simple models which rely
on the Holt-Winters heuristic decomposition procedure for scasonal data. These models are
appropriate in inventory control systems, when the noise component of the time series is relatively
large, and when limited historical data rule out more sophisticated models.

The discussion of Holt-Winters is illustrated by Exhibits 1-7. Exhibit | shows examples of
forecast profiles. There is no agreement in the literature on notation for Holt-Winters so Exhibit 2

Model Recurrence form Error-correction form
3-1 S =aX, +(1—-x)5,_, 8, =5,_, tae
Non-seasonal X (m) S, X(m)=35,
3-2 S =alX, = I_)+(1 -5, S, =8_; +ae,
Additive I-—&(X S)+(l—o)l, L= (L —ae,
seasonals Xim)y=58,+1_ ptm X,(m)=S,+ fpim
33 S =a(X,/1_,)+{] —a:)S, ) 8 =8_,+tae/l,_,
Multiplicative ) I = 8(X,/S,) % (1~ _ L=+ - a)e,/S
seasonals X,(m) S pim X(m)= S,I,_pm

Exhibit 3. Constant level models (simple smoothing)
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Model Recurrence form Error-correctioh form
41 SFaX +(l—a)(S ., +T,_)) S,=8,_,+T,_, +ae,
Non-seasonal = y(S S+ =9T,_, . T T, | Foye,
X(m) S, +mT, X,(m) =8, +mT,
4-2 ,=cc(X,- L)+ —o)(S,_ +T,. ) S, =S_,+T,_, +ue
Additive = ]}(S S.l l) + (] - ]J)T‘ 1 T ’[:l 1 T oye
seasonals I =X, -S)+(1-871_, I =1 _,+ &1 ~—a)e,
X(m) S +mli+1_,.. X(m) S+mT+1, ptm
T 4:3 st o Sy= ol Xl ) A - az)(S,”-_-l +7_;) S, =8,_,+T,_, +oefl_
Multiplicative T,=¢S,—-8_)+(- T,=T_ +aye/l_, .
seasonals IL=8X/8)+(1— 5)1, I =1_,+ 1 —aje/S,

X(m)——(S +mT)I, pim

Exhibit 4. Holt-Winters linear trend models

is prbposed as a standard. Exhibits 3-7 contain model formulations corresponding to the forecast

profiles in Exhibit 1. With a few exceptions, each model is written in two forms, a recurrence form
and an error-correction form. The recurrence forms were used in the original work by Brown and
Holt and still have pedagogic value. However, the error-correction forms are equivalent and

generally easier to use.

Section 1 discusses simple smoothing (Exhibit 3) for a constant-level process. Sectlon 2 discusses
models for linear trends (Exhibits 4 and 5). Section 3 deals with non-linear trends (Exhibits 6 and

7). The research in each section is reviewed according to the following questions. What are the -

useful properties of each model? What parameters are recommended ? How should the model be

initialized ?

Model Recurrence form Error-correction form
5-1* S, =aX, +(l-uS,_, S$,=8_,+T,_, +as
Non-seasonal T,=«(S,— 8, ) +(1 -7, T,=T,_,+a’e,

X(m) S+(1 )T—i—mT )('(m)—S+(1 )T+mT
5-2* S, =aX,+(1—a)S,_, S=5_,+T,_,+a2—a)e,

Non-seasonal S/ =a8, + (1 —)8]_,

X (m) =28, ~ S”+m(l )(S )

5-3 N/A
Additive

seasonals

5-4 N/A

‘Multiplicative

seasonals

Ti = Tr—l + azer
L(m)=8,+mT,

§5,=S,. 1~rT , H o2 — e,
T T , +o’e
A I, +5[l—m(2—-u)]e,
X,(m)= S+mT+1, phm

S,=8,-1+ T,y +al2 e/l
T=T Hofel
~ I,=], +5[1—c:(2—a)]e,/S
2,m) = (S, mT)]

N/A, Not applicabie.

Exhibit 5. Brown’s linear trend models (* denotes equivalent models)

i
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Model

Recurrence form

Error-correction form

6-1
Non-seasonal

6-2
Additive
seasonals

C 63

Multlpllcatwe
seasonals

S, =oX, +{1 —a)}(S,_, T, 1)
—?(SJS. D+ =97,
,(rrr) ST
S,=a(X,—1_)+(1~a)8_,T_,
?;='Y(Sr/Sr-l)+(l_y)Tl‘l
. I¢= ‘5(X1_St)+“ - 5)It-P
X(m):ST’"+I,_,,+m

Sy =o(Xf) +?(1"\"°5)Sz—1'Tr"—‘1
—v(S,/S, O+(1=nT,
1 =8X/S)+(1=8)1,_,
X(m) ST pim

So=58,_,T,-, +oe,
F,=T,_, +aye/s,_,
¥ (m) A

8 =5_,T,_, +ue
T Tr 1+Df}’€|/’S,_l
I, i_ ,+§(l e,
X(m) ST +1_ .,

'!Si Sz lTr l+u|-/1
T T:l 1‘}'(&}’8,/8' l)/II
L=1_,+ &1 — a)e,s,

X(!ﬂ) (S T"‘) —ptm

Exhibit 6. Exponential trend models

In Section 4, we review the general exponential smoothing methodology according to the same
questions. General exponential smoothing differs from Holt—Winters in that Fourier functions of
time are used to model seasonality. This introduces a considerable mathematical complexity which
has been an obstacle in practical applications. However, recent research has done much to simplify
general exponential smoothing.

In Sections 5-7, we turn to problems in the maintenance of forecasting systems based on
exponential smoothing. These problems apply to both Holt-Winters and general exponential

Model

Recurrence form

"Error-correction form

7-1
Non-scasonal

Sr =°:Xr +(1 —C!)(S,_, +¢Tr-1)
T,=v8—-S_)+(1—-y¢T,._

X(m=5+ Y #T,

7-2
Non-seasonal

7-3
Additive
seasonals

7-4
Multiplicative
secasonals

N/A

N/A

N/A

Si=8,_,+6T,_, +ue,
T, =¢T,_, +aye

X(my=S,+ 3 #'T,
R =
SI=SI"l +¢Tr—l +C!(2—(1)€,
T,=¢T,_, +ala— ¢+ le,

Zom=5,+ ¥ ¢T,
i=1
S;=5,.,+¢T,_, +a2—a)e,
T,=¢T,_, +ale— ¢+ e,
(=14 81— a2 —a)le,

X(m =8 + Z¢T+ —pm
S=8_,+¢T,. l+a(2_'“)elﬂ| )
T =¢T,_,+ale—¢+ e/l _
L= I+ Ol —o(2— a}]e,:’S
X" =(Si+i¢’r 1)! ptm

N/A, Not applicable.

Exhibit 7. Damped trend models (0 < ¢ < 1)
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smoothing. Section 5 discusses quality control models for detecting bias in the forecast errors. A
related topic, the use of adaptive parameters to improve the response rate of the forecasts to
changes in the structure of the time series, is discussed in Section 6. Section 7 reviews various
strategies for improvement of the forecasts, such as adjusting for autocorrelation in the errors and
combining the forecasts from several different methods.

[n Section 8, we evaluate the state of the art from a pragmatic point of view. The aim is to develop
guidelines for the application of the exponential smoothing methodology. We also suggest some
new directions for future research. '

1. MODELS FOR A CONSTANT-LEVEL PROCESS (SIMPLE SMOOTHING}

Model formulations for a constant-level process (Exhibit 3) are explained in Section 1.1. Properties
are discussed in Section 1.2. In Sections 1.3 and 1.4, we review recommended parameters and
- starting values. Two important extensions of constant-level models, to multivariate and
. intermittent time series, are:discussed in Sections 1.5 and 1.6.

1.1. Model formulatlons

Simpte smoothing represents the time series by X b+e wheree isa random component with’

mean zero and variance o2, The level 5 is assumed to be constant in any local segment of the series
but may change slowly over time. In Model 3-1, the statistic S, is an unbiased estimator of the level
as well as the forecast for any period ahead. Models 3-2 and 3-3 adjust for additive and
multiplicative seasonality, respectively. The two seasonal models give much the same forecasts
when the level of the series is stable. But if the level changes and the seasonal fluctuations change
proportionally, Model 3-3 is more appropriate. -

1.2. Properties of simple smoothing
Although the simple smoothing model is a weighted moving average, it is possible to derlve a
smoothing parameter which gives approximately the same forecasts as an unweightcd moving
average of any given number of periods. For details see Brown (1959). This relationship has led
some researchers to conclude that simple smoothing has no important advantage in accuracy
(Adam, 1973, with corrections by McL.eavey et al., 1981; Armstrong, 1978; Elton and Gruber,
1972; Kirby, 1966). However, Makridakis et af. (1982) found that simple smoothing was
significantly more accurate than the unweighted moving average in a sample of 1001 time series.
When the sample size is large, simple smoothing is optimal with respect to a discounted-least-
squares (DLS)criterion, with discount factor § = I — a. Muth (1960) was the first of many to prove
that simple smoothing is optimal for the ARIMA (0, 1, 1) process:

(1—B)X,=(1 —0B), (1

The condition for optimality is & = 1 — «. A similar process for which simple smoothing is optimal
is the random walk:

X*=X* +e,, )]
X, =X¥+¢, (3)

X, is the observed value, X* is the ‘true’ level of the series which 15 unobserved, and the two error
terms are generated by independent white neise processes. Harrison (1967), Nerlove and Wage

‘
-

B
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(1964), and Theil and Wage (1964) showed that simple smoothing is optimal with a determined by
the ratio of the variances of the noise processes. Further interpretation of this result is given by
Harvey (1984b), who pointed out that the Kalman filter for (2) and (3) reduces to simple smoothing
in the steady state.

These are the only optimal properties of simple smoothing although robustness has been
predicted by other research. Cogger (1973b), Cohen (1963), Cox (1961) and Pandit and Wu (1974)
argued that more complex models may not yield significanitly smalier errors on some series not of
the ARIMA (0, 1, 1) type, provided that one-period-ahead forecasting is the only concern. Such
series include first-order autoregressive processes (Cohen, Cox) and certain lower-order ARIMA

| processes (Cogger, Pandit ‘and Wu). Bossons (1966) also argued that exponential smoothing can

be relatively insensitive to specification error, especially when the mis-specification arises from an
incorrect belief in the stationarity of the generating process.

Robustness was supported by Makridakis er al. (1982) (see also Makridakis, 1983). Simple
smoothing was the best overall choice for one-period-ahead forecasting, considering 24 time series
methods and a variety of accuracy measures, such as mean absolute percentage error(MA PE), the
average ranking of each method; and the mean squared error (MSE).

More evidence of robustness is given by the simulation study of Gross and Craig (1974). Simpie
smoothing and Bayesian forecasting were used to estimate the means of Poisson demand series,
which are frequently encountered in inventory systems. Overall there was little difference in
accuracy. However, simple smoothing was superior when the series contained step changes in the
mean. This is surprising because the major claims for success of Bayesian methods are based on
time series of this nature.

1.3. Parameter selection

In certain inventory problems, it is possible to derive a smoothing parameter which is optlmal in
the sense that it minimizes the costs of stock replenishment policy. Examples are given by Adelson
(1966), Howe (1974}, Landi and Johnson (1967), and Trigg and Pitts (1962). This line of research
depends on highly restrictive assumptions and may be difficult to implement. For example, the
only costs considered by Landi and Johnson are due to fluctuations in inventory and order levels.

In practice, the smoothing parameter is usually chosen by a grid search to minimize the ex post
MSE. This procedure can be justified as an approximation to the exact maximum likelihood
estimate of the parameter via the Kalman filter (sce Harvey, 1984b).

Most of the research on simple smoothing has-assumed a range of 0-1 for ¢, although a more
restricted range of 0.10-0.30 is typical in practice. It is widely held that a more complex model
should be entertained if the best o value falls above 0.30 during the model-fitting process. For an
example of this argument, see Montgomery and Johnson (1976).

There is no evidence to support such a restricted range of parameters. Both theory and empirical
work suggest that a wider range of parameters should be considered. Harrison’s (1967) analysis of
serial variation functions showed that underestimation of the optimal parameter is always more
serious than overestimation. A frequently overlooked property of Model 3-1is that it is equivalent
to a difference equation which s stable in the range 0 < a < 2 (Brenner ez a/., 1968). Another way to
justify a wider range for « is to recognize that the ARIMA (0, 1. 1y process is invertible in the range
D<a<?2.

In the Makridakis et al. study (1982), a values above 0.3 were frequently estimated during the
model-fitting process. Although Makridakis did not consider Models 3-2and 3-3, large o values in
the linear trend models (Exhibit 4) were also found. A more limited study by Chatfield (1978) also
found relatively large parameter values. These studies show that it is dangerous to guess at values
of the smoothing parameters. The parameters should be estimated from the data.



8 Journal of Forecasting Vol 4, Iss. No. !

Furthermore, it is desirable to subject the parameters to ex ante testing. There is ample evidence
(Fildes and Howell, 1979; Fildes, 1979) that ex post fiti has little correlation with ex ante accuracy.

1.4. Starting values

Starting values (as of time 0) for S and [ are required by the models in Exhibit 3. Methods for
computing S, have been developed by a number of rescarchers. There appears to be no empirical
evidence favouring any particular method. Brown’s (1959) original suggestion, simply using the
mean of the data for S,, is popular in practice. Ledolter and Abraham {1984) recommended
backcasting to obtain S, since this leads to the same forecasts as the ARIMA (0, 1, 1) model

“ 7 éitimated by unconditional least squates. Backd¢asting is done by reversing the time order of the

data and using the most recent data point to start the smoothing process. .
SF=58%, +ae, )

When the beginning of the series is reached, S is used as S, in Model 3-1.
When only a few data points are available, it can be difficult to choose a starting value, Gilchrist

" (1967, 1976) proposed using an exact DLS formulation for S, rather than the approximation in

Model 3-1. The advantage is that noestimate of starting values is needed. One of many equivalent
DLS formulations for S, is: T

!l r=0

-1 -1 o '
S.= 2 ﬂ'X,_,/ > F Y
r=0

S, can be estimated recursively with:

) Nr=Xz+ﬁN1—l o - {6
Dr=l+ﬁDx—l (N
S, =N/D, 7 &

N, and D, are always zero. Model 3-1 is an approximation to the DLS formulation, In the limit,
the two are equivalent. Thus one could switch to the simpler Model 3-1 after enough data have
been collected to fit the model. Similar ideas for climinating the need to estimate starting values are
discussed by Cogger (1973a), McClain (1981), Taylor (1981)-and Wade (1967).

Another alternative with a limited number of data points is to use Bayesian methods to.combine
a prior estimate of the level with an average of the available data—see Cohen (1966), Johnson and
Montgomery (1974) and Taylor (1981}.

A linear regression on dummy variables can be used to obtain starting values for the additive
seasonal. factors.. Heuristic algorithms for estimating starting values for both additive and
multiplicative seasonality can be found in-Johnson and Montgomery (1974), Montgomery and
Johnson (1976) and Winters (1960). Classical time series decomposition methods (see Makridakis
and Wheelwright, 1978) are more objective than the heuristics and require about the same
computational effort. The seasonal factors from a decomposition correspond directly to the J,
values in Models 3-2 or 3-3. One of the methods for estimating S, can then be applied to the
deseasonalized data.

1.5. Extensions to multivariate time series

The models in Exhibit 3 treat each time series independently but there are many applications in
which a multivariate model would be more appropriate. An exampie is an inventory control system
in which the products are competitive. Simple smoothing has been generalized to maltivariate
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forecasting by Jones (1966) and Enns et al. (1982). The generallzauon is straightforward. We
replace the scalars in Model 3-1 with: .

S,=8,_, +ae, 9
If there are X series, the dimensions of'S,, S,_ |, and e, are k x 1. The smoothing matrix a has
dimension k x k.

Enas et al. assume that the time series are produced by a multivariate generalization of the
random walk, equations (2) and (3) above. The parameters are estimated by maximum likelihood,
further assuming that the variances of the disturbance terms are proportional. The algorithm

_.requires the concentrated likelihood function corresponding to.(9) to be computed. If there are N
observations on each series, this involves construction of the covariance matrix of Nk observations
and the diagonalization of a certain N x N matrix. Recent work by Harvey (1984a) showed that
this complexity is unnecessary. Using the same assumptions as Enns et al., Harvey showed that the
concentrated likelihood function can be expressed in terms of quantities which make up the
likelihood function for the individual series. _ 7

The practical result of this insight is that, given the Enns et @/ assumptions, one can use
univariate smoothing models to forecast related time series. The univariate parameters can be
chosen by a grid scarch to minimize the sum of the vector products of the one-period-ahead errors
(3 e€). Such parameters approximate those obtained via the concentrated likelihood function.
Harvey also gives exact maximum likelihood procedures based on univariate application of the
Kalman filter. Harvey’s results hold for smoothing models containing polynomial trends and
seasonal components as well. In either the approximate or exact case, the simplification compared
to Enns et al. is considerable. -

1.6. Extensions to intermittent time series

Another important extension of simple smoothing is to series wh1ch are observed intermittently.
This is a common situation in production and inventory systems. For example, demang at the
retail level may be filtered through a distributor before it affects the production sysfem, The
distributor usually replenishes stocks in lots, which makes the demand on production intermittent.
If simple smoothing is applied to an intermittent demand series, the forecasts are wildly biased. We
underestimate the size of individual demand transactions and ovérestimate the long term average
demand.

Simpie smoothing has been modified for intermittent series by Croston (1972) with corrections
by Rao (1973). See also Peterson and Silver (1979) for a discussion of applications of the Croston
model. The basic idea is to smooth two components of the demand process separately: the size of
gach demand transaction and the time between consecutive transactions. When a demand
transaction occurs, we smooth each component. The forecast for the next period is the ratio of the
smoothed size to the smoothed time between transactions. If a time period passes with no demand,
we do not change the previous estimates. The forecasts are unbiased if the probability of
occurrence of a transaction follows a Bernoulli process.

Problems similar to those described above occur when the data happen to be collected at
irregular time intervals or when some data are missing from the series. Modifications to
exponential smoothing for these situations are available in Tydeman (1972) and Wright (1983).

2. MODELS FOR LINEAR TRENDS

Several alternative model formulations are commonly used for lincar trends, as explained in
Section 2.1. The properties of these formulations are reviewed in Section 2.2. Parameter selection
and recommended starting values are discussed in Sections 2.3 and 2.4.
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2.1. Model formulations
A linear trend process is X, = b, + b, + ¢,. The simple smoothing modei will lag this process for
infinite time. The lag or bias in the forecasts will eventually stabilize at an expected value of
b,(1 —a)/e (Brown, 1963). There are several ways to adjust for the lag in simple smoothing.
Model 4-1, due to Holt et al. (1960) and Winters (1960), uses separate parameters to smooth the
level and trend of the series. The Brown models in Exhibit 5 use a single parameter to smooth both
components. The Holt—Winters models were developed by heuristic reasonmg, whereas the Brown
models yield a DLS with discount factor f = 1 — a. Models 5-1 and’ 5-2 are equivalent and both are
special cases of Holt—Winters. This can be seen by comparmg the error-correction form of Model
‘41 to that of Model: 5-2. : c
The seasonal Holt—Winters Models 4—2 and 4 3 require three parameters, Wh]Ch can be
cumbersome in large forecasting systems. In Exhibit 5, the seasonal models require only two
parameters. This is achieved by adding the Holt—Winters seasonal updating procedure to the
Brown Model 5-2. The result is a DLS on the seasonally adjusted data. Only the error-correction
forms are given for the seasonal models in Exhibit 5—the recurrence forms are too inefficient for
- practical use. '

2.2. Properties
Muodel 4-1 is optimal for two generating processes. Harrison (1967), Nerlove and Wage (1964), and
Theil and Wage (1964) proved optimality for a random walk with a linear growth term:

=T+, (10
X*=X* +T% +¢,, (1)
X, = X* ., +¢,, ' (12)

The optimal smoothing parameters are determined by the relative variances of the three white
noise processes. Harvey (1984b) showed that the steady-state Kalman filter for (10)~(12) reduces to
Model 4-1.

The same authors also proved optimality for the ARIMA (0, 2, 2) process:

(1—-B)*X,=(1—0,8—6,B%e, (13)

The moving average parameters are related to the smoothing parameters as follows:
f,=2—a—ay and 62 =a—I.

Brown’s Model 5-1 is optimal for the ARIMA (0, 2,2) process but for a smaller subclass than
Holt-Winters. The Brown model is equivalent to an equal-root ARIMA (0, 2, 2) model (Cogger,
1974,

Thus the Holt—-Winters model is somewhat more general than Brown’s. Does the added generality
significantly improve forecast accuracy? The answer depends on the generating process. Harrison
(1967) derived the variance of the forecast errors for the ARIMA (0,2, 2) process and concluded
that the maximum penalty for the use of Brown’s model would be an increase in the standard devi-
ation of the errors (one-period-ahead) of less than 2 per cent.

In empirical studies involving other generating processes, Holt-Winters has generally had a
wider margin in accuracy over the Brown model—see Gardner and Dannenbring (1980),
Makridakis and Hibon (1979) and Makridakis et af. (1982). The reason is the additional flexibility
of the two-parameter model when applied automaticaily to a large number of series. For example,
if a series contains no trend, the corresponding Holt-Winters parameter will be fitted at a level near
zero and the model will behave much like the simple smoothing model. But the Brown model will
always extrapolate some trend from any series.
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Turning to the seasonal models, the additive Model 4-2 is optimal for a certain ARIMA process
derived by McKenzic (1976a). However, this generating process is so complex that there is no point
in reviewing it here—see equation (16) of McKenzie (1976a). As Chatfield (1977) observed, the
additive version of Holt-Winters would never be identified through Box—Jenkins procedures. The
multiplicative Model 4-3 does not appear to have an ARIMA equivalent. Thus the seasonal
Holt-Winters models are not special cases of the class of ARIMA models recommended by Box
and Jenkins.

Both the Holt- Winters and Brown models were robust at short h0r1zons in the Makridakis et a!
study (1982).. At longer horizons (more than three or four periods ahead) both models had a

" +fendeficy to overshoot the data. As discussed ini Section 3, it'may be advisable to damp a linear

trend at long horizons.

2.3, Parameter selection .
Moderate parameters, generally less than 0.3, have been recommended for the Holt—-Winters
models in Exhibit 4. For the Brown models, « values of 0.2 or less are generally accepted.

-Examples of these recommendations may be found in Brown (1963), Coutie ef af. (1964), Harrison

(1967) and Montgomery and Johnson (1976).

Although these parameter ranges have been criticized as arbitrary (Chatfield, 1978), they are
appropriate in inventory control applications where forecasts are generated automatically. Tt is
important to detect biased errors as quickly as possible in inventory control. Quick detection
increases the lead time available to adjust the flow of material into stock. Gardner {1984) showed
that using moderate parameters makes it easier to.detect biased errors, regardless of the tracking
signalused. The reason is thata trend-adjusted model has a tendency to overshoot sudden changes
in the series, such as a step increase in level. Before the model.catches up to.the new level, the
forecast errors are negative in sign; after the overshoot, the errors are positive which confounds the
tracking signal. 1t should be noted that the simple smoothing parameter has no effect on bias
detection with most tracking signals {Gardner, 1983a). Tracking signals are discussed further in
Section 5.

In other applications, a wider range of parameters should be considered. Makridakis et al.
(1982) and Chatfield (1978) found that the most accurate parameters were.frequently in the range
0.3-1. Should parameters above 1.0 be considered? Theory suggests that they should. McClain
and Thomas (1973) showed that the non-seasonal Model 4-1 is stable (invertible) over the range
0<a<2and 0 <v<({4—2a)e.

The search for parameters within the region of stability can be narrowed by avoldmg areas
of oscillation. The largest value of « in Model 4-1 which does not lead to oscillation is given by
a < 4y{(1 +7)? (McClain and Thomas, 1973; McClain, 1974). There is no evidence that restricting
parameters in this manner improves accuracy. Makridakis ef al. (1982) for example had great
success with oscillatory parameters

The Brown Model 3-1 is stable for 0 < o < 2. The model is also critically damped This means
that one obtains the fastest possible response to a structural change in the time series without
oscillation, Again, it is not clear that this property is relevant to forecast accuracy.

Much like simple smoothing, Harrison’s (1967) analysis of serial variation functions showed
that underestimation of the optimal parameters in Model 4-1 is always more serious than
overestimation. He also found that the variance of the forecast errors is more sensitive to
departures from the optimum in a than y. McClain and Thomas (1973) reached the same
eonclusions.

Work on the regions of stability of seasonal model parameters has been done by Brenner et al.
(1968) and McClain (1974). Unfortunately, the regions are so complex that it is difficult to
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generalize from this work. Using computational methods, Sweet (1983a, b) reached the following
conchusions on the parameters for seasonal models (both additive and multiplicative): if the length
of the seasonal cycle is four periods, the model is always stable for parameters between 0 and 1. If
the cycle is 12 periods, the model is not necessarily stable for parameters in this range. The
conditions for stability are complex. Sweet gives procedures for checking the stability of any set of
parameters. :

A grid search can be used to find the parameter set which minimizes the fitted MSE -although
sophisticated search procedures such as the Hooke-Jeeves pattern search algorithm are more

_ efficient. Examples favouring Hooke-Jeeves are available in Berry and Bliemel (1974) or Flowers
(1980). A FORTRAN 1V program for the Hooké-Jeeves algorithm is also available in Buffa and

Taubert (1972).

Does the forecasting horizon used during the model-fitting process make any difference in ex
ante accuracy ? For example, should the one-period-ahead MSE be used to select parameters when
the ex ante horizon will be longer? A simulation study by Dalrymple and King (1981) found that
the horizon used during model-fitting made no difference in ex ante accuracy. Makridakis et al.

' (1982) reachied the same conclusion.

2.4. Starting values : :

Starting values for the linear trend models can be obtained with backcasting although this
procedure should be used with caution. If the trend is erratic, it is casy to generate a negative
starting value for S;. Problems with backcasting can be avoided by using ordinary least squares
estimates of the level and trend. Decomposition methods can be used to start the seasonal factors.
When the historical data are limited, exact DLS models can be used as with simple smoothing—see
Cogger (1973a), Gilchrist (1976) and McClain (1981). -

3. MODELS FOR NON-LINEAR TRENDS

The linear models in Fxhibits 4 and 5 can be extended in several different ways to accommodate non- -

linear trends. In Section 3.1, we deal with exponential trends, which are dangerous atlong horizons
but may be useful for short-range forecasting early in the product life cycle. In Section 3.2, we
discuss damped exponentials. This form of trend was the most accurate at long horizons in the
Makridakis ef al. study (1982). Methods for smoothing polynomial trends of any order are
reviewed in Section 3.3. Since the polynomial models are of little practical interest, formulations
are not included in the exhibits. ‘

3.1. Exponential trends

An exponential trend is generated by X, = bob} with b, > 0. Several smoothing models have been
suggested for this process—see Pegels (1969), Brenner ef al. (1968) and Reberts (1982). The
simplest approach is that of Pegels in Exhibit 6. The local slope of the process is estimated by
smoothing successive ratios of the level of the series (S,/S,_ ). No analysis or empirical research
has been reported for this model, although least squares estimates of the level and slope together
with a decomposition provide obvious starting values.

3.2. Damped exponential trends

The first model in Exhibit 7 adds an autorcgressive parameter ¢ to the Holt-Winters linear Model
4-1,If ¢ = 1, Models 7-1 and 4-1 are identical. If ¢ > 1, the growth in the forecasts is exponential
(but this model requires one more parameter than Pegels). If ¢ < 1, the growth has a damped
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exponential form, declining in both relative and absolute terms each period. The difference
between a linear and a damped trend can be substam:al at long horizons, even with a relatively
large ¢ of say 0.9 or 0.95.

In Model 7-2 there is one less parameter than in Model 7-1. This is achleved by modifying
Brown’s linear model. If ¢ = 1, Models 7-2 and 5-2 are identical. Model 7-2 is extended to seasonal
data in Models 7-3 and 7-4. Both seasonal models require three parameters. Model 7-1 is not
extended to seasonal data since four parameters would be needed.

Although the parameters in Model 7-2 are simple and intuitively reasonable, they do not satlsfy
a DLS criterion unless d) =1. The gcncral DLS solution for a damped exponential trend is:

RS [1 —(B/¢)*Tand hy = [1 2B/ (ﬁ/(,‘b")] wheré &, and h; are the parameters for the level

and trend, respectlvely, and the discount factoris f = | — . This solutl(_)n follows directly from the

work of McKenzie (1976b).
Roberts (1982) showed that Model 7 i 1s optlmal for the ARIMA (1, 1 2) process:

(L= $BY1 —B)X,=(1 —6,B— 6,8, (14)

The conditions on the parameters are 8, =1+ ¢ —a — day'and 8, = — ¢{1 — a).

If ¢ is unknown, which is almost always the case, ordinary least squares cannot be used to
estimate starting valués for the damped exponential models. Thus backcasting is the most practical
way to obtain starting values for level and trend. Again, decomposition can be used to start the
seasonal factors.

No direct empirical evidence is available on the damped exponential models, although some
indirect evidence is available from the performance of Lewandowski (1982) time series methods in
the Makridakis et al. (1982) study. Lewandowski used a damped trend like the models in Exhibit 7
on most time series. The rate of decay in the trend increased with the noise in the series. This
strategy was far more accurate than competing time series methods at long horizons.

3.3. Polynomial trends
An nth-degree polynomial trend process is written:

X, =by+ byt +5b,12 + -+ (n Db " (15)

The n + 1 coefficients can be estimated by taking lincar combinations of the first # + | orders of
exponential smoothing. This result is known as the fundamental theorem of exponential
smoothing (Brown and Meyer, 1961). D’Esope (1961) proved that coefficients estimated in this
manner are optimal with respect to a DLS criterion with f=1—a.

To illustrate, the orders of smoothing are designated by §,. S/, ...,5/" . In Model 3-1, S, is the
first order of smoothing and estimates the level of a constant series (a zero-degree polynomial). In
Model 5-2, S, is smoothed to yield S;" and they are combined to estimate the coefficients of a linear
trend process (a first-degree polynomial). Contintuing in the same fashion, linear combinations of
the first three orders of smoothing would estimate the coefficients in a quadratic trend process.

Polynomial trend models above the first degree are of little practical interest in business and
econemic forecasting. These models have some undesirable feedback properties, particularly a
tendency to amplify noise in the series (Morris and Glassey, 1963). In the Makridakis et al. (1982)
study, guadratic smoothing was unstable and perhaps the worst time series method tested.
Numerous authors have also questioned the need for higher-order polynomial models because of
the excessive differencing implied in the equivalent ARIMA process. In general, exponential
smoothing of order n is optimal for the ARIMA (0, n, n} process (Cogger, 1974, Godolphin and
Harrison, 1975; Goodman, 1974; Ledolter and Box, 1978; McKenzie, 1974). Thus quadratic
smoothing implies the ARIMA (0, 3, 3) process which is rarely, if ever, observed in practice.
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It should be mentioned that one empirical study (Markland, 1970) found that .guadratic
smoothing was more accurate than Brown’s linear model, using a sample of extremely volatile
series (sudden changes in level and trend) from an inventory system. It is difficult to generalize from
this study because the results appear to be distorted by intermittent observations of the data. There
is also some question as to whether reasonable alternatives to the quadratic model were
considered. For example, the series were non-scasonal although a seasomal version of
Holt—Winters was compared to the quadtatic model. '

- 4 -GENERAL ‘-EXPONE-NTIA»L-SM OOTHING

General exponential smoothing (GES), direct smoothing and adaptive smoothing are terms used
interchangeably to describe the use of DLS to fit certain functions of time to the data. The
, functions considered are polynomials, exponentials, sinusoids, and their sums and products. Such
" functions are sufficient to model any ARIMA process. The main difference from the Box-Jenkins
- approach is that there is little emphasis on identification. The main difference from Holt—Winters
is the use of sinusoids to model seasonality. _ . ‘

In Section 4.1 we summarize how GES models are formulated and estimated. In Sections
4.2-4.4, properties, recommended starting values and parameters are reviewed. Several extensions
of the GES methodology, designed to improve accuracy and streamline the calculations, are
discussed in Sections 4.5 and 4.6. The empirical evidence comparing GES to Holt-Winters is
reviewed in Section 4.7. The GES notation is from McKenzie (1976a).

4.1. Model formulation and ésﬁma,tion i . .
A GES model is formulated as a multiple linear regression. The forecast equation is:

X(m)= Y a(n)fi(m) =af(m) (16)
i=1
The vector of coefficients is a. The vector f is composed of known functions of time. The only
allowable functions are those mentioned above, usually called “fitting functions’.
Details of estimation procedures for a are thoroughly discussed by Brown (1963). Here we state
only the criterion for a and the solution. a is chosen to minimize

P S | a7

The solution. requires that we smooth the model parameters rather than the components of the
time series as in the Holt—Winters approach. The error-correction form of the solution is:

a,=La,_, +he ' (18)

L is a constant square matrix dependent only on. the fitting functions and defined such that
f, = Lf, . ,. The smoothing vector is h defined by h = F~'f{0). Vector h depends on both the fitting
functions and the discount factor . The vector f(0) is composed of the fitting functions at the time
origin. For large ¢, F is given by:
F=F=Y PR-)f(-) (19)
i=0

Explicit expressions for h have been derived in some cases {Brown, 1967, 1982; Dobbie, 1963;
McKenzie, 1976a; Sweet, 1981). Usually, b is obtained computationally. FORTRAN programs
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for computing h for additive scasonal patterns are available in' Abraham and Ledolter (1983), and
Groff and Muth (1972). Tables of L, f, F~* and h, mostly for additive seasonal patterns, are
available in Brown (1963, 1967, 1977, 1982) and Montgomery and Johnson (1976):

If the data are non-seasonal, theré is no reason to use'GES. An equivalent and simpler model
from the Holt-Winters class can always be formulated. For example, it can be shown (Brown,
1963) that GES for a polynomial model is equivalent to multiple smoothing (Section 3.3) with
a=1-4 ' .

If the data are seasonal, GES differs considerably from Holt-Winters. The seasonal terms in
GES are eoefficients of cosine and sine functions, whereas in Holt—Winters the seasonal terms are

* .- indexes of the typical level of demand each period:-Although it is diffieult to know how many

cosing/sine terms are required, we can state a rule (Brown, 1982) for the maximum number of terms
{based on the highest frequency that could be observed in the data). Assume that the seasonal
pattern goes through a complete cycle in 1 year. If the data are monthly, at most 11 seasonal terms
are ever needed. If the data are quarterly, at most three terms are needed. To |llustrate assume that

the seasonal pattern is addmve and the data are monthly. The seasonal terms are:

a3 cOs ! + a, sin @t + a5 cos 2wt +
ag sin 2wt + a, cos 3wt + agsin 3wt +
d,cosdwt + a, ,sindwt + a,, cos Swf +
a5 5in Sent 4 a5 cos 6wt

The terms are numbered starting with a, because we usually reserve a, and a, for the level and
trend. ¢ is defined as 21t/p, where p is the number of periods in the seasonal cycle. It may seem that
we should end the series with a sine term but thls always turns out to be zero when plseven and can
be neglected.

If the seasonal pattern is multiplicative, note that it is necessary to mult1ply each cosine or sine
term by the trend. This makes the model far more complex, which may be the reason that only
additive- seasonal patterns are typically used in practice. It is interesting that miultiplicative
seasonal patterns are typlcally used in the Holt-Winters models.

4.2. Properties

.GGES has two advantages compared to Holt—Winters. First, the use of a single parameter f§ in the

range 0-1 means that the forecast errors always have finite variance. Secondly, the structure of
GES is such that all seasonal terms are revised with cach observation. This should make the
forecasts more responsive to changing seasonal patterns.

McKenzie (1976b) showed that GES is optimal for the ARIMA process:

$(B)X, = 0(BB), (20)

in which 8(8)=1—-6,B8—- . —8,8 and ¢$(B)=1—¢ B—---—¢, B If there are no
exponentials in the model ¢ can be substltuted for # on the right hand side of (20) and the optlmal
process becomes:

$(B)X, = $(BB), | 1)

It is not clear that the equivalent ARIMA model could always be identified from the data.
Abraham and Ledolter (1983) argued that many GES models would not be identified because the
use of DLS to fit the models forces unreasonable restrictions on the ARIMA parameters. Roberts
(1982) argued to the contrary.

Whatever the outcome of this dispute, the problem of identification is not important here. The
practical implication of McKenzie’s work is this: once a GES model has been selected, the ARIMA
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equivalent is often more efficient. The reason is that &, can be revised with explicit linear equations,
avoiding the need to store the transition matrix L. Many of the components of the fitting functions
turn out to be zero, making an explicit expression for the forecasts more efficient. See McKenzic
(1976b, 1984) for examples comparing the computatlonal efficiency of GES models and ARIMA
equivalents.

4.3, Parameter selection
Brown (1977) recommended f§ in the range 0.75 (‘fast smoothmg for shorter time series) to 0.90
(riormal smoothing). Once f has been selected, we still require the components of h, which may not

“Héavailable“explicitly.. Howevet, "‘McKeénzie showed that ‘the ‘équivalent ARIMA model usually

yields an expllcn expression for h.

4.4. Starting values
Starting valuesin GES can be obtained with a least-squares fit of a multiple linear regression model

to.the available data. This can be done in two ways. One is to set the time origin at period 1 and use

the regression cocfficients as a,. Then we smooth the data until the current value of a, is reached.
An alternative is to set the time origin at the most recent data point in the regression model. The
coefficients then correspond directly to a,.

In any event, a depends on § and it is cumbersome to experiment with different values of f. Note
that F~! must be computed for each value of §. It is usually simpler to initialize a using the
equivalent AR]MF} model. '

4.5. Extensions of GES to the Holt-Winters seasonal models

The Holt—-Winters seasonal models require three parameters. Sweet (1981) developed GES
versions of Holt-Winters and related seasonal models which require only one parameter. The
seasonal fitting functions in Sweet’s models are vectors of zeros and ones, correspondlng to dummy
variables. This property of the fitting functions aliowed Sweet to derive explicit expressions for ¥~ !
and h, considerably simplifying the forecasting and revision process. McKenzie's result above for
the equivalent ARIMA process also holds for the Sweet models (McKenzie, 1984). For exampie,
the Holt-Winters model with linear trend and multiplicative seasonality is -optimal for:

(= BVX, == B, o (22)

4.6. GES with two discount factors-

Harrison (1965) and Ameen and Harrison (1984) have criticized the use of a single discount factor
for both trend and seasonality in GES. It seems reasonable to expect better performance if the two
components are modelled separately, with individual discount factors.

Several alternatives to GES have been developed that appear to be virtually unknown in the U.S.
The simplest is known as ‘SEATRENDY (Harrison, 1965). This method is similar to Model 5-2
above (where we combined Brown’s double smoothing model with Holt-Winters seasonal factors)
except that Harrison’s seasonal factors are Fourier coefficients estimated by:

L

V a,=(1/2p) Z [!—p+mcos(ip’m)‘ (23)

m=1

b=(120) ¥ I pemsin Gt i= 12 pP2 e

m=1
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i, is defined as [2(m — D)n/p] — 7. Each coefficient is tested for significance and the smoothed
seasonal factors are estimated by:

l_pem=1+ > fa;cos {ip, ) + &;sin (i,,)], i=1,2,...,p/2 (25)

The summation includes only significant harmonics.

Another alternative, calied ‘DOUBTS’ (Harrison, 1965), is essentially a double application of
GES, first to the trend and then to the seasonal component. Again the structure is similar to Model
5-2. The first step is to use a moving average to remove seasonality from the series.. The double

" gmodthing modél is fitted‘and deviations from the trerid are computed: Finally, GES is used to fit

cosine and sine terms to the deviations, Different values of f are used for the trend and seasonal
components. DOUBTS is widely used in the U.K. in preference to SEATREND although
Harrison found little difference in forecast accuracy between the two. _

The third alternative, ‘Discount Weighted Estimation’ (Ameen and Harrison, 1984), is more
general in that two discount factors -are used directly in the matrix F of the weighted fitting

" functions: The'result is a model 41 which the trend and seasonal components each give a DLS in

isolatiom. Ameen and Harrison derived modified recurrence relations for this approach and
showed the resulting models have ARTMA equivalents. Roberts (1982) presented a number of
examples of this type of model.

4.7. Empirical evidence on GES

Which version of GES should be used ?Is GES in any form more accurate than Holt-Winters? The
evidence is sketchy but suggests that one of the GES models with two discount factors should be
preferred to standard GES (with a single discount factor). Whether the GES models with two

-discount factors are more accurate than Holt—Winters awaits further evidence.

Groff (1973) compared standard GES to Holt-Winters on 63 monthly sales series and found
little difference in accuracy. Reid (1975} compared standard GES, SEATREND and Holt-Winters
on various subsets of 113 macroeconomic series. Standard GES was applied to every series,
SEATREND to 47 series and Holt-Winters to 69. In one-period-ahead forecasting, Holt-Winters
did better than standard GES on 72 per cent of the serics. SEATREND did better than standard
GES on 79 per cent of the series. SEATREND was also better than Holt—Winters 57 per cent of the
time.

A study by Wagle et al. (1968) used the same models as Reid in one-period-ahead forecasting
with 20 monthly sales series. Standard GES was best on four series, SEATREND on two series,
and Holt—-Winters on 14 series. ‘

Another study by Davies and Huitson (1967) compared DOUBTS and Holt-Winters at
various forecasting horizons using 22 monthly sales series. For horizons 1-6 there was little
difference in accuracy. At longer horizons, DOUBTS was somewhat more accurate.

5. FORECAST MONITORING

In most forecasting systems, it is important to automatically monitor the forecast errors to ensure
that the system remains in control. This is especially true when the system is based on simple
exponentiai smoothing, which will lag any trend in the data. In inventory control, forecast
monitoring is essential because of the need to take off-line action when there is a significant change
in demand. If demand goes up, new orders should be placed on a priority basis, whereas orders
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currently outstanding should be expedited into stock. If demand goes down, any unneeded orders
should be cancelled to prevent excess inventory investment.

In Section 5.1, we review the operation of monitoring devices (tracking signals) used to keep
watch for signs of bias in the forecast errors. The establishment of control limits for the signals is
discussed in Section 5.2. The empirical evidence on the choice of tracking signal is discussed in
Section 5.3,

5.1. Tracking signals .
The first tracking signal used in forecasting was the simple cumulative sum (cusuri) of the errors,
- developed by Brown€1959). The simple ciisum is defined as the ratio of the sum of the errors at the
end of each period to the smoothed mean absolute deviation (MAD)of the errors. The ratio should
fluctuate around zero if the errors are unbiased. If the ratio exceeds a control limit, an exception
report is issued to the user, :
One possible difficulty with the simple cusum is that it may give an unreasonable number of false
alarms. That is the cusum may wander away from zero over time due to nothing more than
- randomness. To mitigate thisproblem, Brown (1971, 1982) developed the parabolic mask tracking
system which operates as follows: we keep a record of the last 8-12 values of the simple cusum. To
test for bias, a parabola is constructed and centred over the most recent cusum. The arms of the
parabola point backward in time. If any previous cusum falls outside the area of the parabola, an
exception is reported. This should be a more powerful statistical test because the distance from
zero of the last cusum is irrelevant—we test only the recent changes in the cusums themselves.
The most thorough tracking signal was developed by Harrison and Davies (1964). This signalis
also based on cusums, but they are computed backward in time. The first backward cusum is just
the current error; the second is the sum of the last two errors; the third is the sum of the last three
errors, and so on. Each cusum is tested individually for bias. The number of cusums needed to
operate this control system quickly gets out of hand in any time series. However, Harrison and
Davies devised a system whereby all possible cusums can be implicitly tested for bias by storing
only four quantities. The best proof of this result is by Coutie er al. (1964). _ '
Trigg (1964) developed a signal for the mean error which is widely used in practice. The signal is
simply the ratio of the smoothed error to the MAD. The value of the signal will fluctuate between 0
(perfect forecasts) and | (extreme bias in the forecasts). Gardner (1983a) proposed a signal for
autocorrelation defined as the ratio of the smoothed covariance in errors (at lag 1) to the smoothed
MSE. This signal will also fluctuate between 0 and 1. '

5.2, Control limits

Control limits for tracking signals can be set according to the probability of getting a false report,
defined as a Type [ error, or a case where the control limit is exceeded due to chance. Cumulative
probability distributions for all signals described above except the backward cusum are available
in Gardner (1983a), which extends earlier work by Batty (1969), Brown (1963), and Montgomery
and Johnson (1976). '

McKenzie (1978) also discussed the distribution of Trigg’s signal in the case where the
smoothing parameter in the tracking signal is allowed to differ from that in the forecasting model.
McKenzie argued that the smoothing parameter in the tracking signal shouid generally be smaller
than that in the forecasting model. Given a good starting value, this idea should reduce the
variance of the signal and make it easier to detect bias in the errors..

Another approach is to set control limits on the basis of average run lengths, defined as the
number of time periods required to detect bias in the forecast errors. Control limits of this nature

are also available in Gardner (1983a).

-

..
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5.3. Empirical comparisons :

There have been four empirical studies comparing the ab1I1ty of tracking sngnals o detect bias in
the forecast errors. The first was by Golder and Settle (1976), who found that Harrison and Davies’
backward cusum was superior to Trigg's signal. Gardner (1983a, 1984, 1985) compared the ability
of all five signals to detect bias in forecast errors. Performance comparisons were made on the basis
of average run lengths to-detect bias in simulated time series. Surprisingly, the simple cusum was
recommended as the best signal. The simple cusum gave about the same performance as the
sophisticated cusum models and performed significantly better than the Trigg and autocorrelation
signals.

-oGgrdner (1985) Tound: that. using-a- relativély small parameter. in-the Trigg signal-improved
performance as McKenzie predicted. However, the signal was unstable and unresponsive to bias at
any smoothing parameter (in the forecasting model) above 0.1, regardless of the parameter used in
the tracking signal.

- 6. :ADAPTIVE CONTROL -OF THE SMOOTHING PARAMETERS

In the previous section, the goal of forecast monitoring was to alert the user to the need for
intervention in the forecasting system. Here the goal is more ambitious, to make the forecasting
system completely automatic.

Thus far we have treated the smoothing parameters as constants. Adaptive parameters -are
designed to improve performance by automatically changing in a controlled manner as the
structure of the time series changes. Some measure of forecast accuracy is monitored to detect
changes in the series. If recent accuracy has been good, adaptive-control systems assume that the
structure of the time series is stable and should apply mederate parameters. If accuracy
deteriorates, the assumption is that the structure of the series has somehow changed and the
parameters are increased in order to shorten the response lag in the forecasts.

Section 6.1 compares a number of methods for controlling adaptive parameters. Section. 6.2
reviews the empirical evidence on the effectiveness of adaptive parameters.

6.1. Control methods

The most popular control method is based on Trigg’s tracking signal described above (see also
Trigg and Leach, 1967). As each error is observed, this method sets the value of ¢, equal to the value
of the'smoothed forecast error divided by the MAD. A smaller idea was developed:by Van Dobben
De Bruyn (1964), except that a, increases along an S-shaped path as accuracy deteriorates. This
makes &, nearly constant for small errors but accelerates the response to large errors. -

Another popular control method, called evolutionary operation, was developed by Chow
(1965), This approach requires that three forecasts be computed each period. One forecast is
computed using a base value of a. The others are computed using a;; = « + 0.05 and oty = — 0.05.
If the forecast error using = is less than that using ay and ¢;, no change in « is made. If the error
from oy or a; is lower, & is reset to ay or o, . New values of &, and «;_are computed and the process
begins anew. Chow’s work was extended by Roberts and Reed (1969), and later by Montgomery
(1970), to automatically control two or more parameters in the same model. See also Raine { 197])
for criticisms of the theory of evolutionary operation in forecasting.

The stability of these control methods has been widely criticized (see for example Fildes, 1979).
Several modifications have been suggested in an attempt to avoid unstable forecasts. Shone (1967)
suggested that the changes in « using the Trigg and Leach method be delayed one period—that is,
we set ¢, equal to the value of the ratio at r — 1. Flowers (1980) suggested that the range of
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permissible values for « be constrained. Whybark (1973) (see also Roberts and Whybark, 1974)
developed a conservative model which changes a only when certain control limits on the size of
each error are broken. Dennis (1978) developed a similar model which changes a only when a
control limit on the numbér of consecutive errors with the same sign has been broken.
Another conservative model was proposed by Rao and Shapiro (1970), who used the spectrum
of the time series to detect changes in structure. Successive spectra of overlapping portions of the
series are-computed, with & determined as a function of the maximum change in the various

frequency components. This procedure should make the forecasts highly resistant to outlying data i

points.

- i+ Finally, the Kalman filter-has béeri used to control the simple smoothing model (Bunn, 1981;
Enns et al., 1982). In the context of simple smoothing, the Kalman filter is based on the structure of
the random walk given in equations (2) and (3) in Section 1.2. a, is taken as the ratio of the.variance
of X* to the total variance of X,. Bunn gives a simple recursive approximation to the variances
whereas Enns et af. give a maximum likelihood algorithm.

Kalman filtering, at least in the forms used by Bunn and Enns et a/., has two limitations as an

- adaptive control method. One is the implicit assumption that the underlying covariance structure
of the generating white noise processes is not changing with time. If this assumption is true, the
recursions will quickly yield the steady-state solution for «. If the assumption is not true, the
recursions are incorrect. Another limitation is that « is overly restricted to the range 0-1. There
appears to be no way to modify the filter to expand the range for «. Sec Harvey (1984a, b) for more
discussion of the relationships between Kalman filtering and exponential smoothing.

6.2. Empirical evidence ‘ :

Despite the apparent popularity of adaptive parameters in practice, the empirical research is not
encouraging. There have been 10 studies comparing the ‘accuracy of adaptive and constant
parameters. A summary of the results: six studies favoured adaptive parameters, but later
researchers raised serious guestions regarding the validity of five of these studies. The sixth
favourable study is difficult to evaluate for reasons explained below. The seventh study was
indifferent between adaptive and constant parameters although we show below that some of the
comparisons may be biased. The remaining three studies, all based on large sample sizes, favoured
constant parameters. . , :

The six studies favouring adaptive parameters were by Bunn (1980), Dennis (1978), Hollier et
al.(1981), Whybark (1973), Chow (1965) and Smith (1974). The first four studies were re-examined
by Ekern (1981, 1982), who found no convincing evidence favouring adaptive parameters.
Gardner (1983b) reached the same conclusion regarding the study by Chow. Smith gives
simulation results favouring a certain adaptive method which is described only in broad terms.
Unfortunately there is not enough information to apply Smith’s method to any other time series.

The one indifferent study was by Dancer and Gray (1977), who used adaptive parameters {Trigg
and Leach, Whybark) on 359 time series. However, for 97 series Model 5-2 was used in error—5;"
was taken as the forecast. If the correct model had been used, the constant-parameter version may
have done better relative to the adaptive version. :

Studies favouring constant parameters were by Gardner and Dannenbring (1980}, Makridakis
and Hibon (1979) and Makridakis e al. (1982). Gardner and Dannenbring used 9000 simulated
time series to evaluate all the methods described above with the exceptions of Rao and Shapiro
Kalman filtering. Adaptive parameters gave unstable forecasts even when the structure of the
series was stable. The instability offset any responsc advantage when changes in structure
occurred. The Gardner and Dannenbring results are mostly based on ex post fit, a viewpoint which
is often misleading, as discussed in Section 2. However, other large-sample studies agree with the

S
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conclusions. Makridakis and Hibon used the Trigg and Leach method with simple smoothing in
111 series. A constant parameter gave better results using a variety of ex ante error measures, a
conclusion which was further confirmed using 1001 series in the study by Makridakis ef a/. (1982).

Thus no convincing advantage for adaptive parameters has been demonstrated as yet. There
may even be some penalty in accuracy for the use of some of these methods. An alternative to
adaptive parameters is to simply refit the forecasting model at regular intervals, using only recent
data (Eilon and Elmaleh, 1970). One could also refit immediately after an exception report issued
by one of the tracking signals discussed in Section § (Buffa, 1975). Using either strategy, the
refitting can be done automatically if one is willing to specify a set of permissible o values, say

L 0a1;0i2,0:3,. ., 1.9, Eilon and-Elmafeh -as-well as ‘Biiffa recorded worthwhile improvements in

accuracy compared to models fitted only once to the early part of each series.

7. TWO-STAGE FORECASTING

Diagnestic checking to determine whether an exponential smoothing model is statistically
adequate is usually ignored. There appears to be no solution except to test the adequacy of the
corresponding ARIMA model (if such a model exists). If we cannot easily validate a smoothing
model, we can at least attempt to improve the forecasts through what Gilchrist (1976) calls two-
stage forecasting. The forecasts from any of the models discussed above are treated as the first
stage. They are modified in a second stage by one of several procedures discussed below.

7.1. Adjustments for autocorrelanon in the errors

If significant autocorrelation is found in the rrors, an autoregressive model can be used to modify
the forecasts. The most common pattern is first-order autocorrelation (in the one-period-ahead
errors). This pattern can be estimated recursively with a simple DLS model: If -the estimated
autoregressive parameter is R, the one-period-ahead forecast is modified by Re,. The m-period-
ahead forecasts are modified by R™e,. The modification decreases rapidly with m and is of
little help for more than a few periods ahead. Improvements in accuracy through this procedure
were reported by Chatfield (1978) and Reid (1975).

7.2. Combining the forecasts from several models of the data :
A number of researchers have found advantages in combining exponential smoothing with causal
models or with other time series methodologies (Chen and Winters, 1966; Corcoran, 1978; Crane
and Crotty, 1967: Gardner, 1979; Kao and Pokladnik, 1978; Newbold and Granger, 1974).

One might also combine several different smoothing models. A great deai of empirical evidence
favouring combinations of smoothing models was réported by Makridakis et a/. (1982) and
Makridakis and Winkler {1983). The first study tested two methods of combining forecasts.. One
was a simple average of five exponential smoothing models (two constant-level, three linear trend)
and adaptive filtering. The second was a weighted average based on the sample covariance matrix
of percentage errors of the six models. Surprisingly, the first method was better using most error
criteria (on 1001 time series). Compared to the other time serics methods tested, the first combining
method was clearly the best performer in MAPE and average ranking did about the same as several
other methods in median APE and average MSE. Further results are given by Makridakis and
Winkler (1983), who showed that the MAPE decreased continuously as more models were
combined. Of course the rate of decrease eventually approached zero.

Thus a simple average of several exponential smoothing models seems worth trying in practice.
But the details of implementation are not clear. How should the particular models be selected ?
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When should this approach be preferred to a single model? The most vexing problem is that of
monitoring the forecasts. It is easy to imagine a situation in which tracking signals would report
one or more individual models to be out of control whereas the combined forecast appears to bein
control (or vice versa). -

7.3. Regressing actual data on the forecasts , , ,
The objective in this approach is to eliminate systematic bias in the forecasts. We obtain the
second-stage forecasts by a linear regression of actual data on the first-stage forecasts. Favourable
empirical evidence is reported by Brandon er al. (1983) who applied the procedure to several

- gxponential smoothing models in 33-timé series (composed. of quarterly corporate earnings data).

8. THE STATE OF THE ART

A judicial summing up: choosing parameters and models on the basis of ex post fit cannot be
justified. The restricted ranges of parameters and starting values typically used in practice are
arbitrary and may detract from accuracy. There is no evidence that choosing parameters in regions
of oscillation has any effect on accuracy. The horizon over which the parameters are fitted is not
important. Exact DLS is recommended when there are few data to estimate starting values. With
interrelated or intermittent series, modified versions of exponential smoothing should improve
accuracy. It is widely held that Brown's linear trend model is as accurate as Holt-Winters. Brown’s
model also has the theoretical advantage of being critically damped. However, Holt-Winters has
been more accurate in empirical studies. S :

A linear trend is typically used for any forecasting horizon although there is evidence the trend
should be damped as the horizon increases. GES in standard form is difficult to justify. The
equivalent ARIMA model is simpler, more efficient and easier to initialize. The GES models with
two discount factors and the Swect models are attractive alternatives to GES in standard form.
Trigg’s smoothed-error tracking signal is ubiquitous although the evidence favours any of the
cusum signals. No advantage for adaptive parameters has been demonstrated as yet. Adaptive
parameters may even detract from accuracy. ‘

As a methodology, exponential smoothing suffers from the lack of an objective procedure for
model identification. There is also no. procedure for diagnostic checking. of the.chosen model
(although the use of tracking signals mitigates this problem to some extent). Numerous
Box—Jenkins forecasters have been critical of exponential smoothing because of these deficiencies.
This criticism is valid but the Box-Jenkins approach is infeasible in many practical applications.
Furthermore, the multiplicative Holt—Winters seasonal models do not have ARIMA equivalents,
The additive Holt-Winters models have ARIMA equivalents but they are so complex as to make
identification through their autocorrelation structures impossible. :

More research is clearly needed on the problems of model identification and validation in
exponential smoothing. The only guidance in the literature appears to be that of McKenzie (1984),
who suggested that the variances of the possibly relevant differences of the data be used to assistin
model choice. The order of differencing yielding minimum variance is a simple indicator-of the
appropriate ARIMA model (and its GES equivalent). McKenzie's procedure could be used
automatically with any version of GES.

Several other questions deserve more research. Are the GES models with two discount factors
more accurate than Holt—Winters ? It would be valuable to have results using the Makridakis e al.
data on this question. It would also be valuable to have results for the Sweet models so that the
penalty for the use of a single parameter in the Holt-Winters approach could be assessed. Should
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an autoregressive model be fitted to the forecast errors as a matter of course? Again the
Makridakis data could help answer this question.

When should a combination.of ¢xponential smoothing forecasts be used? How should the
models to be combined be selected? Makridakis er al. (1982) offer little guidance on these
questions.

Exponential smoothmg 18 frequently the only reasonable time series methodology in large
forecasting systems. In smaller applications, a wide range of alternative methodologies is
available. There is presently no theoretical basis for choosing among these alternatives. In the
Makridakis et a/. study, the best methodology varied considerably depending on the error

~ “critérion, the forecastmg horizon; whether theé data wére aggregated, and éven whether the data

were collected on an annual, quarterly, or monthly basis.

Because there is so little agreement on the most accurate time series methodology, robustness
may be the most practical basis for selection of a methodology, a view shared in Fildes’ (1979)
state-of-the-art survey on time series. There is substantial evidence that exponential smoothing
models are robust, not only to different types of data but to specification error. Thus exponential
smoothing should not be dismisséd out of hand.

The fact that much of the literature has dismissed exponential smoothing as a special case of the
Box-Jenkins methodology has been an obstacle to the advancement of time series forecasting.
This attitude is no longer supportable considering the difficulties with ARIMA equivalences for the
Holt—Winters seasonal models and the fact that exponential smoothing was at least as accurate as
Box-Jenkins in the studies by Makridakis and Hibon (1979) and Makridakis ez a/l. (1982). A more
realistic attitude is that both expenential smoothing and the Box-Jenkins methodology have
merit. The challenge for future research is to establish some basis for choosing among these and
other approaches to time series forecasting. ‘
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COMMENTARIES

‘Exponential Smoothing: The State of the Art’
by E. S. Gardner, Jr.

.. Introduction to the Commentaries

KENNETH O. COGGER
University of Kansas. U.5.A.

The -comprehensive survey of the state of the art in exponential smoothing by Gardner was
impressive on my first reading. When asked by the editors to organize commentaries on the paper,
I was happy to take on this task, given my perception of its importance. .

Although much of the paper is not controversial, it was nevertheless desired that the widest
range of people be contacted and asked to comment. Nine experts in the topic area with a variety of
perspectives were invited to formally comment on the paper. Practitioners as well as academics
were represented. Some were closely identified with early developments in the area of exponential
smoothing, and others were associated with continuing developments in the ARIMA modeling
area, Several of those invited to comment did not submit formal commentaries but did review the
work very favourably and provided reactions directly to Gardner. In some cases, these comments
were incorporated in the manuscript. :

The commentaries which follow present Gardner's paper, I believe, in the proper perspective. As
McKenzie states, the paper contributes greatly to our understanding of the development of
smoothing procedures as well as our understanding of their properties. Knowledge of these
properties can, as Chatfield points out, help practitioners sort out which procedures might be
applied in a given situation. This selection problem is sometimes difficult and Hillmer's agreement
with Gardner on the need for an organized approach to the selection of a smoothing variant seems
reasonable and suggests potential future research avenues. -

I would like to add an additional comment. Early work, including some by myself, into the
identification of ARIMA equivalents to exponential smoothing has sometimes been incorrectly
characterized as revealing the ‘inferiority’ of smoothing procedures, since in many cases an
exponential smoothing model is demonstrably a special case of a broad class of ARIMA models.

~This characterization. is not shared by me. Analytically, it was shown in an early paper that
smoothing procedures are rather robust. Thus, their ‘inferiority’ in a practical sense has not been
supported. The importance of knowing what these ARIMA equivalences are, however, cannot be
overemphasized. Any progress in developing objective selection procedures for exponential
smoothing will probably benefit from this work, which is fully described in Gardner's paper. A
further important point on model equivalencies is that I have come to the point of view, since the
development of damped trend smoothing, and other variants, that every ARIMA model can
probably be described in exponential smoothing terminclogy. There are exponential
smoothing models which have no ARIMA equivalent (e.g. Winters multiplicative seasonal
smoothing} as well as models which have very non-parsimonious ARIMA equivalents (e.g.
Winters additive seasonal approach). Thus, the debate is not over between provincial advocates of
0277-6693/85/010029-10%01.00 Received October 1984
© 1985 by John Wiley & Sons, Ltd.
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these two modelling procedures. Many of us, I suspect, fall somewhere in between, with the specific
application and setting dictating a practical choice.
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Comments on ‘Exponential Smoothing:
The State of the Art’ by E. S. Gardner, Jr.

-C. CHATFIELD
University of Bath, UK.

It is my impression that a high proportion of projection forecasts are produced by some variant of
exponential smoothing. When I became involved inforecasting, I was initially highly confused by
the complex interrelationships between Holt—Winters, Brown, GES, Box-Jenkins and the like,
and it took me many yéars to sort it all out in my own mind. A review paper clarifying the whole
area is long overdue and this important paper is therefore particularly welcome. It should make life
easier not only for the new researcher but also for more éxperienced workers by providing a handy
reference source. B '
One of the problems in comparing different forecasting methods is the bewildering variety-of
notation. T hope, therefore, that the author’s plea for a standard notation as in his Exhibit 2 will be
respected by everyone even though mosi of us will no doubt be able to think of (different!) ways in
which it:might be ‘improved’. I also endorse the author’s remarks that starting values and
smoothing parameters should generally not be chosen arbitrarily but by looking at the data.
The main message to come out of forecasting competitions such as the M=competition, is that
there are many different types of forecasting problem requiring different treatment, and that no
single class of models is superior in every case. The choice depends on the data, the objectives, the
skill of the analyst, the programs available and so on. My own ‘favourite’ is the Holt-Winters
method which is easy to implement and understand, and seems robust. I am pleased to see that this
method comes out wellin the paper. I also think that the full Box-Jenkins proeedure is sometimes
worth trying, though not when the series is dominated by trend and seasonal variation. I have
never been attracted to Brown’s method because of the use of only one smoething parameterand
its effect on the error-correction form of the model (e.g. e, and a’e,in Exhibit 5). Nor have I ever
been attracted to GES because of its formulation in multiple regression terms. Multiple regression
is a most misused technique. Thus the paper has served to consolidate my view that the Holt—
Winters method is generally a sensible technique to use when a simple projection forecast is required.
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Comments on 'Exponential Smoothing:
The State of the Art’ by E. S. Gardner, Jr.

S. C. HILLMER
University of Kansas, U.S.A.

I found Everette Gardner’s review of exponential smoothing to be very interesting. It is successful
in presenting a broad view of the current state of exponential smoothing. The paper is non-

" ‘tontrgversial in*that its difm is to summarize prévious research on exponéntial smoothing rather

than to come to any definttive conclusions about the ‘best’ variant of exponential smoothing or the
‘best’ forecasting method. I would like to thank Gardner for deing an excellent job of organizing a
vast amount of material in a readable manner. My discussion of the paper is concerned with a
number of observations about exponential smoothing based upon the paper.

One thing that struck me is that there are many different forecasting methods which fall in the
general category of exponential smoothing. For example, Exhibit I suggests that there are as many
as 17 different versions. Why are there so many variations? One explanation is that there are many
different types of time series behaviour occurring in the real world and each different method was
designed to best forecast each different time series structure. Another explanation is that some of
the variations are proposed solutions to time series behaviour which is perceived to exist by
researchers who rarely or never deal with real data but in reality there are few time series for which
these variations are relevant. Some of the variations may be able to be dismissed for this reason;
however, based upon the popularity of exponential smoothing as a forecasting technique it is clear
that many of the versions have some merit. Thus, an important question for the practitioner in
need of a forecast method for a particular time series is: ‘which of the variants of exponential
smoothing is best for my particular data set 7 In a sense much of Gardner's paper is attempting to
provide advice about this question.

My interpretation of the advice is that to pick the correct method, it takes experience, skill and
some knowledge of the characteristics of the data you desire to forecast. A hypothetical
practitioner may have to answer questions such as the following. Is your data seasonal? Is the
seasonality additive or multiplicative? Does the data fluctuate locally around a constant level, or a
linear trend, or a non-linear trend ? How stable are the parameter estimates? Once these kinds of
questions are answered a decision can be made about the particular variant of exponential
smoothing that is appropriate. Then there are other more technical questions to answer. What
values should be chosen for the smoothing parameters? What are the starting values? The review
by Gardner suggests that there are a variety of opinions about these technical issues. Furthermore,
the complexity of the issues seems to'increase the more réimoved the methods get from the basic
exponential smoothing models. My point is that unless a practitioner is willing to limit the
possibilities to only the basic forms of exponential smoothing, the process which leads to getting
the forecasts can apparently get very complicated. I suspect that experts in exponential smoothing
have had a great deal of experience with real data and would admit that there is a great deal of skill
involved in choosing the right alternative. If my suspicions are correct, I would argue that one of
the virtues frequently claimed for exponential smoothing, its simplicity, may be illusory.

Suppose a practitioner is faced with the problem of choosing which approach within the reaim of
exponential smoothing methods will provide the best forecasts. One way to approach this problem
is to arbitrarily select a simple form of exponential smoothing such as a non-seasonal constant
level method or a non-seasonal linear trend method. Suppose this method is going to be applied to
a number of time series. If some of the series’ behaviour is inconsistent with what is implicitly
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assumed by the exponential smoothing method selected (e.g. if they are seasoned) then the forecast
performance for these series may be poor. Thus, there is 2 potential cost to bg paid for the simple-
minded approach. Another approach is to attempt to match the particular variant of exponential
smoothing to homogenous groups of series. This may be difficult for people who are inexperienced
in applying exponential smoothing. What such people need is an organized approach to choosing
a particular exponential smoothing variant and methods to validate that the variant chosen s
appropriate. Gardner recognizes this need when he argues that ‘more research is clearly needed on
the problems of model identification and validation in exponential smoothing’. The results of this
_ research are most critical to beginning exponential smoothers since these results can partially
alleviate their lack of experience. It seems to me that orie of the greatest contributions of Box and
Jenkins to the area of time series analysis is their organized approach to the modelling of time
series. They made it easier for people with limited experience to begin modelling real time series. A
similar contribution would be helpful to novices in the area of exponential smoothing.

I was somewhat relieved to discover that exponential smoothing has evolved to the state where
there are many complex alternatives. In my own experience in the modelling of time series, [ know
that real data can Behave it many different ways. I view the many alternatives in exponential
smoothing as an attempt to deal with the variety of behaviour which exists in real time sertes. [ have
believed for some time that there is a certain amount of art involved with the analysis of data and
the developments in exponential smoothing seem to confirm that belief. If it is true that some of the
more advanced methods discussed in the paper are relevant, then it is worth while to spend time in
deciding which method is most appropriate for the data being forecast. This view is consistent with
the common-sense attitude that if you spend time thinking about a problem (in this case

forecasting a time series) and the peculiarities involved with that problem then you should beina-

better position to pick the best available solution than you.would be if you hadn’t bothered to
* think:
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Comments on ‘Exponential Smoothing:

The State of the Art’ by E. §. Gardner, Jr.

ED. McKENZIE

Naval Postgraduate Schoof, U.S.A. and University of Strathclyde, UK.
The author is to be congratulated on a good practical review of the models and techniques known
collectively as exponential smoothing (ES). As his references show, we have made great progress in
the use and understanding of ES procedures in the last 30 years. However, this has been
accompanied by considerable argument and controversy about models and their performance
commpared with other approaches. My own view is that some of the associated algebra and
numerical legerdemain may be obscuring more basic aspects of the problem. Some of these will be
discussed in this note.
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The underlying model which is assumed to be generating the data consists of a linear
combination of known functions of time plus an error term. Usually, these errors are assumed to
be independent and identically distributed (i.i.d.} random variables with zero:mean. The modeller
takes the view that the coefficients in the linear combination may change in time..He seeks to cope
with this kind of instability by means of ES. There are two distinct approaches available to him,
and we consider these now.

The first encompasses the procedures associated with the work of R. G. Brown which are
optimal with respect to the discounted least squares (DLS) criterion. Although others have
advanced the state of knowledge in this area, Brown’s contribution is smgularly worthy of note.

- More than aniyone he is respon51ble for the popuiarity of this approach His books on the subject

are landmarks in forecasting theory and practice. They are well-written, lucid and, more
importantly for textbooks, easy and often enjoyable to read.

The ideas behind DLS are simple and attractive. The forecasts of future values are weighted
averages of observations with the more recent having greater weight than those in the more distant
past. The motivation for such weighting is that, in this unstable situation, more recent data are
inheréntly more rélevant to the future than earlier values. The idea has great intuitive appeal, but
can be too simple. Consider, for example, the prediction of seasonal data. The data most relevant
to the forecast of sales next April may well include the sales figures for the most recent Aprils as well
as the most recent months.

Considerations such as these lead naturally to the idea of smoothing distinct components of the
forecast, e.g. level, trend and seasonal patterns, separately, and with different rates. This is the
basis of the linear trend system of Holt {Model 4-1) and the seasonal systems of Winters {Models 4-
2, 4-3). The relationships between the systems obtained by the two different approaches is well
displayed by their error-correction forms in Exhibits 3-7. In passing; we note that Models'§-3;i5+4
are not DLS‘optimal. Such models are discussed in Section 4.5. The structure of the different ES
systems is the same for the same models. Only the error-correction. coefficients change. The
highlighting of this structure and the discussion of the choice of these coefficients is an important
aspect of the paper.

Another useful feature of the paper is the presentation of the equivalent ARIMA process for
each system, Although the author does not say so, some care is required in the use of the term
equivalent here. Initially, it is derived as the process whose minimum mean square error (MMSE)
one-step ahead forecasts are given by the ES system. The process is referred to as equivalent only if
the MMSE forecasts for all lead times are given by the ES system. This is a real distinction. There
are lincar forecasting systems whose one-step ahead forecasts are optimal for a particular ARIMA
process but whose forecasts for other lead times are not. For more discussion, see Godolphin and
Hairison (1975).! All the equivalent processes in Gardner’s paper are indeed equivalent.

The practical value of the equivalent ARIMA lies in the fact that since the two sets of forecasts
are identical the procedures for obtaining them may be considered interchangeable. A large
number of practical and theoretical benefits can be derived from this relationship. Some of these
are noted in the paper. They and others are discussed in detail in McKenzie's papers referenced
therein. There are two aspects, however, worthy of some discussion here.

First, we consider the equivalent ARIMA for the GES system given by equation {20). It is
¢(BYX, = 8(BB)e,. In order to make any use of this result we must obtain ¢ and 6, and this is not
discussed in the paper. We note that the model assumed for the data is in the usual form of a
deterministic component plus an error term. The former consists of a linear combination of the
fitting functions, as given by equation (16}, and the error terms, {z,}, are usually assumed to bei.i.d.

V References refer to the list in Gardner's paper.
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with zero mean. Now, ¢ corresponds to the difference equation whose solutions are the fitting
functions {f(1)}. Thus, $(B) () =0,i=1,2,.. ., n Itiseasier toderive ¢ than it may at first appear
sinee the factors of ¢ correspond to different fitting functions. This is discussed in more detail and
examples are given by McKenzie (1976b, 1984). We can obtain 6 directly from ¢ using
O=¢,_ . k=1,2,..,n

We now consider the one-step ahead error process {e,}. Note that e, is the error for both the ES
system and the equivalent ARIMA. Note also that it is not the same as z,. If we filter the GES model
using ¢(B) then, by the definition of ¢, the deterministic component in equation (16) must vanish.

~Thus, ¢(B)X,=(B)z, Hence, from equanon (20) 8(pB)e, = p(B)z,; 1.c. the forecast error process
‘from the. GES forecasts follows an' ARIMA ‘process when the underlying model really is as

supposed. Note that, contrary to ARMA methodology, DLS forecast errors are expected to be
correlated. The DLS forecasts are not optimal in an MMSE sense for the assumed model (as
defined above and by equation (16)}. This is an important point and relates to the underlying
philosophy of ES systems. We shall return to it later.

Apart from any intrinsic interest, the error ARIMA process is important because it allows us to
derive all the statistical properties of the error sequence directly. These are important for
monitoring purposes. The mean and variance are easily obtained. For the GES system they are
available from DLS theory, but for other ES systems, e.g. Winters’ additive seasonal system, the
variance would be very difficult to obtain otherwise. The correlation structure of {e,} is useful if we
wish 1o use a tracking signal such as the CUSUM or smoothed error, or any statistic which uses
more than one error at a time.

There is one aspect. of monitoring which is not discussed in the literature but may be worth
noting here. The philosophy of ES is that the underlying model may change but the forecast will
respond and ‘home-in’ on the new model. Thus, we monitor the forecast errors to ensure that the
response is adequate. Sometimes, however, we may wish to know that a model change has
occurred, even though the forecast response has been adequate and the errors are now acceptable
again. This can be achieved by monitoring {z}. This process is unobservable but can be estimated
using ¢(B8)z, = $(B)X, It has two useful properties. First, by the model assumptions, the processis
uncorrelated and so can be monitored in a standard way, e.g. using a standard CUSUM. Secondly,
if there is a model change, then that change is conveyed to z, and held there indefinitely. As an
illustration of this, consider forecasting a constant level using simple smoothing, i.e. Model 3-1. If
the level changes by an amount A then, N periods after the change occurred, the mean value of e,
is B*A, whereas the mean of z, is still A,

Another area in which the equivalent ARIMA can be helpful is model selection. As the author
notes, this is a sadly neglected topic of considerable importance. The lack of useful procedures is
also highlighted in the empirical comparisons referenced in the paper. In all these studies
comparisons are made with particular ES models, and never with any general ES methodology
(comparable to the ARMA methodology). Naturally, this tends to favour the ARMA approach,
and renders the results of the more recent studies all the more remarkable.

In order to-create a truly automatic ES forecasting system we would need to develop a robust
model selection procedure. The idea of using an automatic system in which models are selected
after only the most cursory and subjective of examinations is clearly foolish. This is not the place to
attempt to develop such a procedure, but there are some pertinent observations we may make. In
the usual situations in which such a routine may be expected to be used the model would be chosen
from quite a small set of models. The corresponding decisions are easily listed. We need to decide
whether the data are seasonal (S) or non-seasonal (NS); if seasonal, then whether additive (AS) or
multiplicative (MS); and finally whether the model needs a linear trend (L), a damped trend (D) or
is trend-free (F). Table | outlines these decisions and the models involved.
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Table 1

Seasonality Trend Model type

3-1
7-1,7-2
4-1; 5-1, 5-2

32
7-3
42,53 .

NS

AS

33
-4
4-3; 54

MS

FoT Mg Fom

The indicated models denote structure only. The parameters used in any particular case may be
‘chosen to have different forms from those in the paper. Some of the decisions can be made by
fitting the data to various models, or passing them through various filters, e.g. differencing. Others,
however, are more complex. It is clearly going to be difficult, for example, to separate the problems
of seasonal type and trend type for seasonal data. Nevertheless, such an automatic procedure is
urgently required for many applications. Further, there is no doubt that were such a system
available it would herald considerable success in the routine application of ES techniques. It would
also make future empirical comparisons somewhat fairer.

Cur final topic concerns perhaps the most intriguing consequence of the ES-ARIMA
equivalence. It involves the frequently quoted view that most ES procedures can be ignored
because they are special cases of ARIMA models. A statement conveying this sentiment appears in
almost every reference in Gardner’s paper where the equivalent ARIMA process for an ES
procedure is discussed. I shall refer to it as the ‘special case’ argument. The theoretical justification
seems clear enough. To make it more concrete, we will examine a particular situation. Consider the
constant level predictor given in the paper by Model 3-1. The equivalent ARIMA process is given
by(l — B)X,=(1 — BB)e, [tisan ARIMA (0, I, 1} process. Note, however that f§ is usually chosen
from the interval (0, 1) whereas if we were modelling an ARIMA (0, 1, 1) process we would be free

- to select B from (—1, 1}. Thus, ES Model 3-1 is a special case of the ARIMA (0, 1, 1} modei, and

enjoys only a restricted range of parameter values. This, in essence, is the ‘special case’ argument.

In the empirical comparisons carried out in the early seventies, the truth of this was apparently
borne out. However, the more recent studies do not reflect the same confidence in its validity or
practical significance. Indeed, in his reply to the Commentary on the M- Competition, Makridakis
notes that the superior performance of the ARIMA procedures as predicted by this ‘special case’
argument did not materialize. He urges further research to determine the reason for this.

We may begin a response to this by noting that in any application we are not comparing simply
different models or procedures. Any sensible comparison should really be between the two
different approaches with their different criteria and philosophies. It is certainly true, as the ‘special
case’ argument suggests, that if we wish to forecast a known ARIMA process with MMSE
predictions we would never consider using ES. On the other hand, if we wish to model a
deterministic function using DLS (perhaps to allow for possible variation in the model parameters)
we would never use the ARIMA methodology. It would be inferior by our chosen criterion, and
counter to our forecasting philosophy.

To illustrate this idea, we return to our example of the constant level predictor. Our choice of
simple smoothing, i.e. Model 3-1, is made on the assumption that, even if the data so far have a
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fairly constant level, we may expect the future to bring changes. The equivalent ARIMA, as noted
before, is an ARIMA (0, 1, 1). Note, however, that the ARTMA modeller is very unlikely to fit such
a model to the data as described. He would probably fit the model: X,= 8, + a,; and 8, would be
estimated by the mean of the data available, This example illustrates the main difference between
the two approaches and their conflicting philosophies. The ARIMA modeller assumes that the
stationarity observed in the data will be preserved into the future. If this should prove to be the case
he can safely anchor his forecasts in the fitted period by using an estimate of the constant level
obtained there. If he is correct, his predictions are MMSE optimal with all the corresponding nice’
statistical properties. The ES modeller, on the other hand, may note the stability of the level in the

" Hiting period, but he fears the worst for thie futiire. As a’ consequeénce, his ES modél will probably

not yield such a good fit on the available data. Nor will it be as good in the future as the ARIMA
model if the data really is stationary there. However, should there be variation in the level of the
process then these two positions are completely reversed. The ES modeller’s primary aim in model
building has to be robustness. This follows directly from his attitude towards the data and the
underlying process. It is important to note that a direct consequence of this philosophy is that the
ES model cannot-attain the*nice’ statistical properties, such as uncorrelated residuals, which are
the goals of the ARMA modeller. Indeed, the ES modeller does not seek them. They are the price
of his goal which is robustness.

It is important to emphasize that relationships between individual models may be entirely
irrelevant to performance in practice. We cannot with any sense of reality compare the behaviour
of particular models in a vacuum. What we must consider are the two approaches and how the
different criteria and conflicting philosophies react to yield a model. To declare ES procedures to
be redundant because of the ‘special case’ argument is at best naive and smphstlc At worst it is
misleading.

In his 1962 book, Brown opens the section on error analysm with a quotation from Sherlock
Holmes. The great detective urges the redoubtable Dr. Watson to warn him if he should ever
become complacent about his powers or careless in his work. Watson is to issue the warning by

whispering in his ear the single word ‘Norbury’. To those who continue to use the ‘special case’

argument | would like to say that I think the time for whispering is past.
NORBURY!
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Author’'s Response to Comments on
‘Exponential Smoothing: The State of the Art’

E. S. GARDNER, Jr.
Navy Fleet Material Support Office, Mechanicsburg.. PA, U.S.A.

McKenzie's mention of Brown's contributions to exponential smoothing prompts this question:
who invented the methodology? Like many other great ideas in management science, it appears
" that &xXponential smoothing was conceived' by at least 'two researchers working independently, in
this case Brown and Holt.

Brown developed exponential smoothing during World War 11 when he worked for the U.S.
Navy's Operations Evaluation Group. One of his assignments involved the design of a tracking
system for fire-control information on the location of submarines. This information was used in a
mechanical computing device (a ball-disk integrator) to estimate target velocity and the lead angle
for dropping depth charges. This tracking model was essentially exponential smoothing of
continuous data, an idea still used in modern fire-control equipment.

After the war, Brown developed the principles of exponential smoothing for discrete data. One
of his early applications was in forecasting the demand for spare parts in Navy inventories. The
savings in data storage over moving averages led to the adoption of exponential smoothing
throughout the Navy’s inventory systems in the late 1950s.

Brown’s first book (1959) presented a set of simple models for inventory applications. His
second book (1963) developed the GES methodology.

Holt worked independently of Brown in the 1950s to develop the same constant-level model, a
somewhat different model for smoothing linear trends, and an entirely different approach to
seasonal data. Holt’s early work was sponsored by the Office of Naval Research and was circulated
in an unpublished memorandum in 1957 (often erroneously cited as a published book in the
literature). Winters assisted in the development of Holt's method, which were completed in
Winters (1960) and Holt er al. (1960).

McK enzie notes that there are occasions when tracking signal reports are useful even though the
forecasts have caught up to the data. This may seem a trivial idea to some but it is a critical
- consideration in forecasting for inventory control. As discussed in Section 5, one must take off-line
action to adjust the pipeline of material flowing into stock after a significant change in demand.
Such action is necessary regardless of whether the forecast response has been adequate.

The need for taking off-line action is the reason for the popularity of simple smoothing in
inventory control applications. The errors from simple smoothing quickly reflect changes in
demand. Use of a trend component in the forecasting model may obscure these changes. That is,
the tracking signal may not have time to report the change because of the faster response induced
by the trend component.

In the interests of full disclosure I should mention that I share Chatfield’s mistrust of GES. My
experience has been that the Fourier functions used to model seasonality in GES are
incomprehensible to most practitioners. In contrast the seasonal terms in the Holt-Winters
approach have intuitive meaning to the model user. Indeed the equivalent ARIMA to any GES
model has more intuitive appeal and ought to be easier to implement.

Hillmer speculates that the simplicity of exponential smoothing (the Holt-Winters class of
models) isillusory. I agree, and the point is worth emphasizing. If one attempts to model individual
series, the methodology is by no means simple. This may explain why model identification has
never been done in published empirical work. I have often wondered how the results of empirical
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studies such as those of Makridakis e al. (1982) or Newbold and Granger (1974) would change if
some attempt at model identification were made.

The problem of medel identification is of course not unique to exponential smoothing.
Advocates of state space models, in particular the Bayesians, have traditionally ignored the
question of identification. Whatever the defects in the Box—Jenkins approach, at least it provides
an organized approach to model-building as Hillmer points out.

Hillmer's notion of modelling homogeneous groups of series is intriguing. There are many
inventory applications in which thousands of forecasts are made each time period with a single
exponential smoothing model. Could accuracy be improved ata reasonable cost in data processing
" ‘¢fficiency by automatically sélecting from several different modelsdepending on the characteristics
of demand? This problem has been overlooked in the literature although it is a promising
opportunity for both theoretical and empirical research.



