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Automatic method selection in exponential smoothing 
 
 

The damped trend method of exponential smoothing is a benchmark that has been difficult to 

beat in empirical studies of forecast accuracy.  One explanation for this success is the flexibility 

of the method, which contains a variety of special cases that are automatically selected during 

model-fitting.  That is, when the method is fitted, the optimal parameters usually define a special 

case rather than the method itself.  For example, in the M3-competition time series, the 

parameters defined the damped trend method only about 43% of the time using local initial 

values for the method components.  In the remaining series, a  special case was selected, ranging 

from a random walk to a deterministic trend.  In most special cases, the optimal smoothing 

parameter for trend was zero, which produces a method with a drift term;  the most common 

special case was a new method, simple exponential smoothing with a damped drift term. 
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Automatic method selection in exponential smoothing 
 
 
1.  Introduction 

 In exponential smoothing, it is common to apply the damped trend method to every time 

series.  Numerous attempts have been made to improve on this practice by selecting individual 

methods for each series.  Examples include selection based on information criteria (Hyndman et 

al., 2008), expert systems (Flores and Pearce, 2000), and time series characteristics (Gardner and 

McKenzie, 1988).  Although method selection procedures often result in simpler methods than 

the damped trend, they have failed to produce better average forecast accuracy.  For a review of 

the evidence, see Gardner (2006).  See also Fildes (2001), who concluded that it is difficult to 

beat the damped trend when a single forecasting method is applied to a collection of time series.  

If individual methods are selected for each series, Fildes argued that it may be possible to beat 

the damped trend, although this has yet to be demonstrated and it is not clear how one should 

proceed. 

 The failure of method selection procedures to improve forecast accuracy is frustrating, 

but what has been overlooked is that the damped trend method contains a variety of special 

cases, ranging from a random walk to a deterministic trend.  Fitting the method is actually a 

means of automatic selection from these special cases.  The next section derives the special 

cases, including a new method of exponential smoothing.  In the following section, we 

demonstrate the frequency with which special cases occur in the time series from the M3 

competition (Makridakis and Hibon, 2000).  

    

 



2.  The damped trend method and its special cases 

Following the standard notation of Hyndman et al. (2008), the recurrence form of the 

damped trend method is written: 
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where  is the level and   is the trend.  The smoothing parameters for level and trend are tl tb α  

and β , while φ  is the damping or autoregressive parameter.  

 Equations (1) and (2) can be rewritten in the simpler error-correction form: 

tttt eb αφ ++= −− 11ll        (4) 
 

ttt ebb αβφ += −1         (5) 
 
where  is the one-step-ahead error.  In the trend equation (5), some forecasters delete the te α  

parameter and smooth the error using an independent parameter β .  However, we prefer to use 

equation (5) as shown to preserve the equivalence between recurrence and error-correction 

forms, both of which are commonly used in practice. 

Depending on the parameter combinations chosen from the [0, 1] interval, the method 

described by equations (3) – (5) has numerous equivalent ARIMA models (see Gardner and 

McKenzie, 1988, and Gardner, 2006).   Depending on the assumptions regarding the properties 

of the errors, the method also has numerous equivalent state space models that go beyond the 

scope of the ARIMA class, as discussed in Chatfield et al. (2001), Koehler et al. (2001), 

Hyndman et al. (2002), and McKenzie and Gardner (2008).  Here we discuss only the most 

common methods that are special cases of (3) – (5). 
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In the empirical work below, the damped trend method is defined by the following 

parameter ranges:  10 ≤≤ α , 10 ≤≤ β , and 10 << φ .  There are at least ten special cases of the 

method.  The best-known special case occurs when 10 ≤< α ,  10 ≤< β , and 1=φ ;  there is no 

damping of the trend component and the method is Holt.  An interesting variation on the Holt 

method occurs when we allow 1=α , with 10 << β  and 1=φ , a method sometimes called the 

smoothed trend method, although for the sake of simplicity we counted it as the Holt method. 

Three versions of simple exponential smoothing (SES) can be obtained from the damped 

trend method.  When 0== βφ  and 10 << α , there is no trend and the method is standard SES.  

When 10 << α , 0=β , and 1=φ , the method becomes SES with drift, as discussed in 

Hyndman and Billah (2003).   With the same α  and β  parameters and 10 << φ , we have a new 

method, SES with damped drift. 

 Three versions of the random walk are possible.   When 1=α  and 0== βφ , the 

method is the standard random walk.   When 1=α , 0=β , and 1=φ , the method is a random 

walk with drift.  With the same α and β  parameters and 10 << φ , we have another new 

method, a random walk with damped drift. 

  In equation (5), when 0=α , three deterministic methods  are possible depending on the 

value of φ .  If 1=φ , the method is a deterministic linear trend because parameter optimization 

does not change the initial values of level and trend.   If 10 << φ , the method is a deterministic 

modified exponential trend.   Finally, if  0=φ , the method reduces to a simple average of the fit 

data. 
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3.  The special cases demonstrated 

To demonstrate the special cases,  we used the 3,003 series from the M3 competition.  

The damped trend method in equations (3) - (5) was fitted after holding out the last 6, 8, and  18 

observations for ex ante testing in the annual, quarterly, and monthly series, respectively.  There 

is also a group of “other” series for which no sampling frequency was given and for which the 

last 6 observations were held out.  The series were deseasonalized using multiplicative seasonal 

indices computed from data in the fit periods.  We tested two common procedures for computing 

initial values for level and trend: local initial values were computed by fitting an OLS regression 

on time to the first five observations in the fit periods, and global initial values were computed 

by extending the regression to include all observations in the fit periods.  For each set of initial 

values, the Excel Solver was applied to find the parameter set from the [0, 1] interval that 

minimized the mean squared error in the fit periods.   

Tables 1 and 2  summarize the methods identified in the M-competition series using local 

and global initial values, respectively.   There are some surprising findings in both tables.  Either 

a drift or a smoothed trend component was identified in about 99% of the series for both local 

and global initial values.  Methods with a drift component were identified in about 38% of the 

series using local initial values and 53% with global.  The drift or trend component was usually 

damped, which happened in 84% of the series using local initial values and in 70% with global.    

 

 

 

 

 



Table 1.    Methods identified in the M3 series using local initial values. 

Percent of series
Case Level Trend Damping Method Ann. Qtr. Mon. Other All

1 0 < α ≤ 1 0 < γ ≤ 1 0 < φ < 1 Damped trend 25.9 47.1 47.5 51.1 43.0
2 0 < α ≤ 1 0 < γ ≤ 1 1 Holt 17.4 14.2 3.6 17.2 10.0
3 0 < α < 1 0 0 < φ < 1 SES with damped drift 17.7 16.7 33.6 14.4 24.8
4 0 < α < 1 0 1 SES with drift 3.6 3.7 1.1 2.3 2.4
5 0 < α < 1 0 0 SES 0.2 0.4 1.5 0.0 0.8
6 1 0 0 < φ < 1 Random walk with damped drift 18.3 9.0 1.9 12.6 7.8
7 1 0 1 Random walk with drift 7.8 2.1 0.4 2.3 2.5
8 1 0 0 Random walk 0.0 0.0 0.0 0.0 0.0
9 0 NA 0 < φ < 1 Modified exponential trend 9.1 6.0 10.1 0.0 8.3

10 0 NA 1 Linear trend 0.2 0.1 0.1 0.0 0.1
11 0 0 0 Simple average 0.0 0.8 0.2 0.0 0.3

Total 100.0 100.0 100.0 100.0 100.0

Parameter values

 
 
 
 
 
Table 2.   Methods identified in the M3 series using global initial values. 
 

Percent of series
Case Level Trend Damping Method Ann. Qtr. Mon. Other All

1 0 < α ≤ 1 0 < γ ≤ 1 0 < φ < 1 Damped trend 11.8 32.0 32.6 29.3 27.8
2 0 < α ≤ 1 0 < γ ≤ 1 1 Holt 2.9 3.2 0.8 0.0 1.8
3 0 < α < 1 0 0 < φ < 1 SES with damped drift 15.8 18.3 30.5 17.8 23.5
4 0 < α < 1 0 1 SES with drift 7.1 17.3 10.4 13.2 11.6
5 0 < α < 1 0 0 SES 0.0 0.4 1.0 0.0 0.6
6 1 0 0 < φ < 1 Random walk with damped drift 21.4 10.1 2.8 19.0 9.6
7 1 0 1 Random walk with drift 24.3 6.3 0.9 20.1 8.4
8 1 0 0 Random walk 0.0 0.0 0.1 0.0 0.0
9 0 NA 0 < φ < 1 Modified exponential trend 8.1 5.7 11.7 0.0 8.7

10 0 NA 1 Linear trend 8.5 6.7 9.2 0.6 7.9
11 0 0 0 Simple average 0.0 0.0 0.0 0.0 0.0

Total 100.0 100.0 100.0 100.0 100.0

Parameter values
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The damped trend method itself was identified in only 43% of the series with local initial 

values and 28% with global.   Notice that the frequency of identification of the damped trend 

increased with sampling frequency in both tables.   The most common special case of the 

damped trend was SES with damped drift, which occurred in almost a quarter of the series for 

both types of initial values.   This method describes a fixed early trend that gradually dies out, 

behavior that may seem strange, but is actually quite common in the M3 series;  an example for 

one of the annual series is given in Figure 1. 

 

 

   Figure 1.  Fit periods for M3 annual series YB067 
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In Gardner and McKenzie (1985), we hypothesized that the damped trend would often 

reduce to SES, but this method was identified in less than 1% of the series with both types of 

initial values.  We hypothesized that the damped trend would often reduce to the Holt method, 

but this happened in only 10% of the series with local initial values and 2% with global.  We also 

thought that the standard random walk method would be identified with some frequency, but this 

happened not at all with local initial values and in only 0.1% of the monthly series using global 

initial values.  However, we did find that the random walk with damped drift was a fairly 

common special case using both types of initial values. 

How do our forecast accuracy results compare to the Makridakis and Hibon 

implementation of the damped trend?  Table 3 summarizes the average symmetric MAPE for 

Makridakis and Hibon’s “dampen” method and the damped trend fitted with local and global 

initial values.  The comparisons vary somewhat by type of data, but for the average over all data 

and horizons, there is no significant difference in accuracy between the dampen method and the 

damped trend with local initial values.  We also note that, except in the quarterly data, local 

initial values produced better accuracy than global. 



Table 3.  Average symmetric APE by forecast horizon 

Nbr. Initial
Data series Method values 1 2 3 4 5 6 8 12 15 18 All

Ann. 645 MH Dampen 8.0 12.4 17.0 19.3 22.3 24.0 17.2
Damped trend Local 8.1 11.9 16.4 18.9 21.7 23.5 16.7
Damped trend Global 8.4 12.4 17.1 19.4 22.0 23.7 17.2

Qtr. 756 MH Dampen 5.1 6.8 7.7 9.1 9.7 11.3 12.8 9.3
Damped trend Local 5.0 6.7 7.8 9.4 10.1 11.6 13.5 9.6
Damped trend Global 4.8 6.5 7.5 9.0 9.7 11.0 12.8 9.2

Mon. 1,428 MH Dampen 11.9 11.4 13.0 14.2 12.9 12.6 13.0 13.9 17.5 18.9 14.6
Damped trend Local 11.9 10.9 12.7 13.5 12.3 12.4 13.5 13.8 17.2 18.9 14.5
Damped trend Global 11.6 11.1 12.2 13.1 12.8 12.8 13.4 14.0 18.0 19.8 14.8

Other 174 MH Dampen 1.8 2.7 3.9 4.7 5.8 5.4 6.6 4.6
Damped trend Local 1.8 2.7 3.7 4.4 5.5 5.1 6.2 4.4
Damped trend Global 1.8 2.8 3.9 4.6 5.7 5.3 6.5 4.6

All 3,003 MH Dampen 8.8 10.0 12.0 13.5 13.7 14.3 12.5 13.9 17.5 18.9 13.6
Damped trend Local 8.7 9.6 11.7 13.1 13.4 14.2 12.9 13.8 17.2 18.9 13.5
Damped trend Global 8.6 9.7 11.6 12.9 13.6 14.2 12.7 14.0 18.0 19.8 13.8

Forecast horizon
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 4.  Conclusions 

The damped trend method of exponential smoothing has performed well in empirical 

studies of forecast accuracy.  One explanation for this performance is the flexibility of the 

method, which contains a variety of special cases that are automatically selected during model-

fitting.   If for some reason the forecaster wishes to avoid any particular special case, the method 

parameters must be constrained accordingly.  To avoid all special cases, that is to guarantee that 

the forecasts will be made with the original damped trend method, all parameters must be kept 

off  the 0-1 boundaries. 

The trend smoothing parameter is especially problematic and was fitted at zero about half 

the time using local initial values in the M3 series;  with global initial values, the trend parameter 

turned out to be zero about 70% of the time.  When the trend parameter is zero, the method 

almost always includes a drift term, which may be fixed or damped.   

This paper introduces a new variant of exponential smoothing, SES with a damped drift 

term.  This may seem an unlikely method, but in my opinion it is no more unlikely than any of 

the other time series methods that contain a fixed drift term.  Given that SES with damped drift 

was identified so often in the M3 series, this method should receive some consideration in 

empirical research. 
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