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Abstract

This special section aims to demonstrate the limited predictability and high level of uncertainty in practically all important
areas of our lives, and the implications of this. It summarizes the huge body of solid empirical evidence accumulated over
the past several decades that proves the disastrous consequences of inaccurate forecasts in areas ranging from the economy and
business to floods and medicine. The big problem is, however, that the great majority of people, decision and policy makers alike,
still believe not only that accurate forecasting is possible, but also that uncertainty can be reliably assessed. Reality, however,
shows otherwise, as this special section proves. This paper discusses forecasting accuracy and uncertainty, and distinguishes
three distinct types of predictions: those relying on patterns for forecasting, those utilizing relationships as their basis, and those
for which human judgment is the major determinant of the forecast. In addition, the major problems and challenges facing
forecasters and the reasons why uncertainty cannot be assessed reliably are discussed using four large data sets. There is also a
summary of the eleven papers included in this special section, as well as some concluding remarks emphasizing the need to be
rational and realistic about our expectations and avoid the common delusions related to forecasting.
c© 2009 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The unknown future is a source of anxiety, giving
rise to a strong human need to predict it in order to
reduce, or ideally eliminate, its inherent uncertainty.
The demand for forecasts has created an ample supply
of “experts” to fulfill it, from augurs and astrologists to
economists and business gurus. Yet the track record of
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almost all forecasters is dismal. Worse, the accuracy
of “scientific” forecasters is often no better than that
of simple benchmarks (e.g. today’s value, or some
average). In addition, the basis of their predictions is
often as doubtful as those of augurs and astrologists.
In the area of economics, who predicted the subprime
and credit crunch crises, the Internet bubble, the Asian
contagion, the real estate and savings and loans crises,
the Latin American lending calamity, and the other
major disasters? In business, who “predicted” the
collapse of Lehman Brothers, Bear Stearns, AIG,
Enron or WorldCom (in the USA), and Northern Rock,
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Royal Bank of Scotland, Parmalat or Royal Ahold (in
Europe); or the practical collapse of the entire Iceland
economy? In finance, who predicted the demise of
LTCM and Amaranth, or the hundreds of mutual and
hedge funds that close down every year after incurring
huge losses? And these are just the tip of the iceberg.

In the great majority of situations, predictions
are never accurate. As is mentioned by Orrell and
McSharry (2009), the exception is with mechanical
systems in physics and engineering. The predictability
of practically all complex systems affecting our lives is
low, while the uncertainty surrounding our predictions
cannot be reliably assessed. Perpetual calendars in
handheld devices, including watches, can show the
exact rise and set of the sun and the moon, as well
as the phases of the moon, up to the year 2099 and
beyond. It is impressive that such small devices can
provide highly accurate forecasts. For instance, they
predict that on April 23, 2013, in Greece:

The sun will rise at 5:41 and set at 7:07
The moon will rise at 4:44 and set at 3:55
The phase of the moon will be more than 3/4 full,
or 3 days from full moon.

These forecasts are remarkable, as they concern
so many years into the future, and it is practically
certain that they will be perfectly accurate so many
years from now. The same feeling of awe is felt when
a spaceship arrives at its exact destination after many
years of traveling through space, when a missile hits its
precise target thousands of kilometers away, or when
a suspension bridge spanning 2000 m can withstand a
strong earthquake, as predicted in its specifications.

Physics and engineering have achieved amazing
successes in predicting future outcomes. By identify-
ing exact patterns and precise relationships, they can
extrapolate or interpolate them, to achieve perfect, er-
ror free forecasts. These patterns, like the orbits of
celestial objects, or relationships like those involv-
ing gravity, can be expressed with exact mathemati-
cal models that can then be used for forecasting the
positions of the sun and the moon on April 23, 2013,
or firing a missile to hit a desired target thousands of
kilometers away. The models used make no significant
errors, even though they are simple and can often be
programmed into hand-held devices.

Predictions involving celestial bodies and physical
law type relationships that result in near-perfect, error
free forecasts are the exception rather than the rule—
and forecasting errors are of no serious consequence,
thanks to the “thin-tailedness” of the deviations.
Consider flipping a coin 10 times; how many heads
will appear? In this game there is no certainty about
the outcome, which can vary anywhere from 0 to 10.
However, even with the most elementary knowledge of
probability, the best forecast for the number of heads
is 5, the most likely outcome, which is also the average
of all possible ones. It is possible to work out that the
chance of getting exactly five heads is 0.246, or to
compute the corresponding probability for any other
number.

The distribution of errors, when a coin is flipped
10 times and the forecast is 5 heads, is shown in
Fig. 1, together with the actual results of 10,000
simulations. The fit between the theoretical and actual
results is remarkable, signifying that uncertainty can
be assessed correctly when flipping a coin 10 times.

Games of chance like flipping coins, tossing
dice, or spinning roulette wheels have an extremely
nice property: the events are independent, while the
probability of success or failure is constant over all
trials. These two conditions allow us to calculate both
the best forecast and the uncertainty associated with
various occurrences. Moreover, when n, the number
of trials, is large, the central limit theorem applies,
guaranteeing that the distribution around the mean,
the most likely forecast, can be approximated by a
normal curve, knowing that the larger the value of
n the better the approximation. Even when a coin is
tossed 10 times (n = 10), the distribution of errors,
with a forecast of 5, can be approximated pretty well
with a normal distribution, as can be seen in Fig. 1.

With celestial bodies and physical law relation-
ships, we can achieve near-perfect predictions. With
games of chance, we know that there is no certainty,
but we can figure out the most appropriate forecasts
and estimate precisely the uncertainty involved. In the
great majority of real life situations, however, there
is always doubt as to which is the “best” forecast,
and, even worse, the uncertainty surrounding a fore-
cast cannot be assessed, for three reasons. First, in
most cases, errors are not independent of one another;
their variance is not constant, while their distribution
cannot be assured to follow a normal curve—which
means that the variance itself will be either intractable
or a poor indicator of potential errors, what has been
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Fig. 1. The erros assuming 5 heads when a coin is flipped 10 times (10,000 replications).
called “wild randomness” by Mandelbrot (1963). Sec-
ond, there is always the chance of highly unlikely or
totally unexpected occurrences materializing — and
these can play a large role (Taleb, 2007). Third, there
is a severe problem outside of artificial setups, such
as games: probability is not observable, and it is quite
uncertain which probabilistic model to use.

In addition, we must remember that we do not fore-
cast for the sake of forecasting, but for some spe-
cific purpose, so we must realize that some forecast
errors can cause harm or missed opportunities, while
others can be benign. So to us, any analysis of fore-
casting needs to take the practical dimension into ac-
count: both the consequences of forecast errors and the
fragility and reliability of predictions. In the case of
low reliability, we need to know what to do, depend-
ing on the potential losses and opportunities involved.

2. The accuracy and uncertainty in forecasting

This section examines each of two distinct
issues associated with forecasting: the accuracy of
predictions and the uncertainty surrounding them. In
doing so, it distinguishes three types of predictions:
(a) those involving patterns, (b) those utilizing
relationships, and (c) those based primarily on human
judgment. Each of these three will be covered using
information from empirical studies and three concrete
examples, where ample data are available.

2.1. The accuracy when forecasting patterns

The M-Competitions have provided abundant
information about the accuracy of all major time series
forecasting methods aimed at predicting patterns.
Table 1 lists the overall average accuracies for all
forecasting horizons for the 4004 series used in the
M-Competition (Makridakis et al., 1982) and the
M3-Competition (Makridakis & Hibon, 2000). The
table includes five methods. Naı̈ve 1 is a simple,
readily available benchmark. Its forecasts for all
horizons up to 18 are the latest available value.
Naı̈ve 2 is the same as Naı̈ve 1 except that the
forecasts are appropriately seasonalized for each
forecasting horizon. Single exponential smoothing
is a simple method that averages the most recent
values, giving more weight to the latest ones, in
order to eliminate randomness. Dampen exponential
smoothing is similar to single, except that it first
smooths the most recent trend in the data to remove
randomness and then extrapolates and dampens, as
its names implies, such a smoothed trend. Single
smoothing was found to be highly accurate in the
M- and M3-Competitions, while dampen was one
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Table 1
MAPEa (average absolute percentage error) of various methods and percentage improvements.

MAPEs: Forecasting horizons Improvement
(in Avg. MAPE)

% Improvement in Avg. MAPE:

1st 6th 18th Avg. MAPE
(1–18 horizons)

over
Naı̈ve1

Naı̈ve2
over
Naı̈ve1

Single
over
Naı̈ve2

Dampen
over
Single

Box–Jenkins
over
Dampen

Naı̈ve1 11.7% 18.9% 24.6% 17.9%
Naı̈ve2 10.2% 16.9% 22.1% 16.0% 1.9% 11.6%
Single exponential
smoothing

9.3% 16.1% 21.1% 15.0% 2.9% 6.4%

Dampen exponential
smoothing

8.7% 15.0% 19.2% 13.6% 4.3% 8.1%

The Box–Jenkins
methodology to
ARIMA models

9.2% 14.9% 19.8% 14.2% 3.7% −2.5%

a All MAPEs and % improvements are symmetric; that is, the divisor is: (Method1 – Method2)/(0.5∗Method1 + 0.5∗Method2).
of the best methods in each of these competitions.
Finally, the Box–Jenkins methodology with ARIMA
models, a statistically sophisticated method that
identifies and fits the most appropriate autoregressive
and/or moving average model to the data, was less
accurate overall than dampen smoothing.

Table 1 shows the MAPEs of these five methods
for forecasting horizons 1, 6 and 18, as well as the
overall average of all 18 forecasting horizons. The
forecasting errors start at around 10% for one period
ahead forecasts, and almost double for 18 periods
ahead. These huge errors are typical of what can be
expected when predicting series similar to those of the
M- and M3-Competitions (the majority consisting of
economic, financial and business series). Table 1 also
shows the improvements in MAPE of the four methods
over Naı̈ve 1, which was used as a benchmark. For
instance, Naı̈ve 2 is 1.9% more accurate than Naı̈ve
1, a relative improvement of 11.6%, while dampen
smoothing is 4.3% more accurate than Naı̈ve 1, a
relative improvement of 27.2%.

The right part of Table 1 provides information
about the source of the improvements in MAPE. As
the only difference between Naı̈ve 1 and Naı̈ve 2 is
that the latter captures the seasonality in the data, this
means that the 11.6% improvement (the biggest of all)
brought by Naı̈ve 2 is due to predicting the seasonality
in the 4004 series. An additional improvement of
6.4% comes from single exponential smoothing,
which averages the most recent values in order to
eliminate random noise. The final improvement of
8.1%, on top of seasonality and randomness, is due to
dampen smoothing, which eliminates the randomness
in the most recent trend (we can call this trend the
momentum of the series). Finally, the Box–Jenkins
method is less accurate than dampen smoothing by
0.6%, or, in relative terms, has a decrease of 2.5% in
overall forecasting accuracy.

As dampen smoothing cannot predict turning
points, we can assume that the Box–Jenkins does not
either, as it is less accurate than dampen. In addition,
dampen smoothing is considerably more accurate
than Holt’s exponential smoothing (not shown in
Table 1), which extrapolates the most recent smoothed
trend, without dampening. This finding indicates that,
on average, trends do not continue uninterrupted,
and should not, therefore, be extrapolated. Cyclical
turns, for instance, reverse established trends, with
the consequence of huge errors if such trends
are extrapolated assuming that they will continue
uninterrupted.

2.2. The uncertainty when forecasting patterns

What is the uncertainty in the MAPEs shown in
Table 1? Firstly, uncertainty increases together with
the forecasting horizon. Secondly, such an increase
is bigger than that postulated theoretically. However,
it has been impossible to establish the distribution of
forecasting errors in a fashion similar to that shown
in Fig. 1 or Table 1, as the number of observations in
the series in the M-Competitions is not large enough.
For this reason, we will demonstrate the uncertainty in
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Fig. 2. Predicted and theoretical number of rainy days.
forecasting by using four long series, allowing us to
look at the distributions of forecasting errors.

Rainfall data from January 1, 1971 to May 6, 2008
(n = 13,648) in Amsterdam show that the chance of
rain on any given day is very close to that of flipping
a coin (0.506, to be precise). Since it rains more
during some periods than during others (i.e. events
are not independent), we can use Naı̈ve 1 to improve
our ability to forecast. By doing so, we increase the
probability of correctly predicting rain from 0.506,
assuming that rainy days are independent of each
other, to 0.694. Fig. 2 shows the theoretical and actual
forecasting errors using Naı̈ve 1. The fit between the
theoretical and actual errors is remarkable, indicating
that we can estimate the uncertainty of the Naı̈ve
1 model with a high degree of reliability when
using the theoretical estimates. It seems that in
binary forecasting situations, such as rain or no rain,
uncertainty can be estimated reliably.

Fig. 3 shows the average daily temperatures in
Paris for each day of the year, using data from
January 1, 1900 to December 31, 2007. Fig. 3
shows a smooth pattern, with winter days having the
lowest temperatures and summer days the highest
ones, as expected. Having identified and estimated
this seasonal pattern, the best forecast suggested by
meteorologists for, say, January 1, 2013, is the average
of the temperatures for all 108 years of data, or
3.945 ◦C.

However, it is clear that the actual temperature on
1/1/2013 will, in all likelihood, be different from this
average. An idea of the possible errors or uncertainty
around this average prediction can be inferred from
Fig. 4, which shows the 108 errors if we use 3.945,
the average for January 1, as the forecast. These errors
vary from −13 to 8 degrees, with most of them being
between 7 and 11 ◦C. The problem with Fig. 4,
however, is that the distribution of errors does not
seem to be well behaved. This may be because we
do not have enough data (a problem with most real
life series) or because the actual distribution of errors
is not normal or even symmetric. Thus, we can say
that our most likely prediction is 3.945 degrees, but it
is difficult to specify the range of uncertainty in this
example with any degree of confidence.

The number of forecasting errors increases signifi-
cantly when we make short term predictions, like the
temperature tomorrow, and use Naı̈ve 1 as the forecast
(meteorologists can improve the accuracy of predict-
ing the weather over that of Naı̈ve 1 for up to three
days ahead). If we use Naı̈ve 1, the average error is
zero, meaning that Naı̈ve 1 is an unbiased forecast-
ing model, with a standard deviation of 2.71 degrees
and a range of errors from −11.2 to 11 degrees. The
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Fig. 3. Average daily temperatures in Paris: 1900 to 2007.
Fig. 4. Errors from the mean in daily temperatures (in Celsius) on January 1st: 1900–2007.
distribution of these errors is shown in Fig. 5, super-
imposed on a normal curve.

Two observations come from Fig. 5. First, there
are more errors in the middle of the distribution than
postulated by the normal curve. Second, the tails of
the error distribution are much fatter than if they
were following a normal curve. For example, there
are 14 errors of temperature less than −8.67 degrees,
corresponding to more than 4 standard deviations from
the mean. This is a practical impossibility if the actual
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Fig. 5. Paris temperatures 1900–2007: Daily changes.
Fig. 6. The daily forecasting errors for the DJIA, 1900–2007.
distribution was a normal one. Similarly, there are
175 errors outside the limits of the mean ±3 standard
deviations, versus 69 if the distribution was normal.
Thus, can we say that the distribution of errors can
be approximated by a normal curve? The answer is
complicated, even though the differences are not as
large as those of Fig. 6, describing the errors of the
next example: the DJIA.
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Table 2
DJIA 1900–2000: Worst-best daily returns.
Fig. 6 shows the same information as Fig. 5,
except that it refers to the values of the DJIA when
Naı̈ve 1 is used as the forecasting model. The data
(n = 29,339) cover the same period as the Paris
temperatures, January 1, 1900 to December 31, 2007
(there are fewer observations because the stock market
is not open during weekends and holidays). The actual
distribution of Fig. 6 also does not follow a normal
curve. The middle values are much higher than those
of Fig. 5, while there are many more values outside
the limits of ±4 standard deviations from the mean.
For instance, there are 184 values below and above
4 standard deviations, while there should not be any
such values if the distribution was indeed normal.2

Table 2 further illustrates the long, fat tails of
the errors of Fig. 6 by showing the 15 smallest and
largest errors and the number of standard deviations

2 Departure from normality is not accurately measured by
counting the number of observations in excess of 4, 5, or 6
standard deviations (sigmas), but in looking at the contribution of
large deviations to the total properties. For instance, the Argentine
currency froze for a decade in the 1990s, then had a large jump. Its
kurtosis was far more significant than the Paris weather, although
we only had one single deviation in excess of 4 sigmas. This is the
problem with financial measurements that discard the effect of a
single jump.
away from the mean such errors correspond to (they
range from 6.4 to 21.2 standard deviations). Such large
errors could not have occurred in many billions of
years if they were part of a normal distribution.

The fact that the distribution of errors in Fig. 6 is
much more exaggerated than that of Fig. 5 is due to
the human ability to influence the DJIA, which is not
the case with temperatures. Such an ability, together
with the fact that humans overreact to both good and
bad news, increases the likelihood of large movements
in the DJIA. There is no other way to explain the
huge increases/decreases shown in Table 2, as it is not
possible for the capitalization of all companies in the
DJIA to lose or gain such huge amounts in a single day
by real factors.

Another way to explain the differences between
the two figures is that temperature is a physical
random variable, subject to physical laws, while
financial markets are informational random variables
that can take any value without restriction—there
are no physical impediments to the doubling of a
price. Although physical random variables can be non-
normal owing to nonlinearities and cascades, they
still need to obey some structure, while informational
random variables do not have any tangible constraint.



724 S. Makridakis, N. Taleb / International Journal of Forecasting 25 (2009) 716–733
Fig. 7. The daily forecasting errors for Citigroup, 1977–2008.
Non-normality gets worse where individual stocks
are concerned, as the recent experience with bank
stocks has shown. For instance, the price of Citigroup
dropped 34.7% between September 9 and 17, 2008,
and then increased by 42.7% on the two days of
September 18 and 19. These are huge fluctuations
that are impossible to explain assuming independence
and well behaved errors (the mean daily return
of Citigroup is 0.044% and the standard deviation
is 2.318%). Therefore, the uncertainty surrounding
future returns of Citigroup cannot be also assessed
either, as the distribution has long, fat tails (see
Fig. 7), and its errors are both proportionally more
concentrated in the middle, and have proportionally
more extreme values in comparison to those of the
DJIA shown in Fig. 6.

2.3. The accuracy and uncertainty when forecasting
relationships

There is no equivalent of the M-Competitions to
provide us with information about the post-sample
forecasting accuracy of relationships. Instead, econo-
metricians use the R2 value to determine the goodness
of fit of how much better the average relationship is in
comparison to the mean (used as a benchmark).
Estimating relationships, like patterns, requires
“averaging” of the data to eliminate randomness.
Fig. 8 shows the heights of 1078 fathers and sons,3

as well as the average of such a relationship passing
through the middle of the data.

The most likely prediction for the height of a son
whose father’s height is 180 cm is 178.59 cm, given
that the average relationship is:

Height Son = 86.07+ 0.514(Height Father)

= 178.59. (1)

Clearly, it is highly unlikely that the son’s height
will be exactly 178.59, the average postulated by
the relationship, as the pairs of heights of fathers
and sons fluctuate a great deal around the average
shown in Fig. 8. The errors, or uncertainty, in the
predictions depend upon the sizes of the errors and
their distribution. These errors, shown in Fig. 9,
fluctuate from about −22.5 to +22.8 cm, with the
big majority being between −12.4 and +12.4. In
addition, the distribution of forecast errors seems more
like a normal curve, although there are more negative

3 These are data introduced by Karl Pearson, a disciple of Sir
Francis Galton.
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Fig. 8. Heights: Fathers and sons.
Fig. 9. The residual errors of the relationship height of fathers/sons.
errors close to the mean than postulated by the normal
distribution, and more very small and very large ones.
Given such differences, if we can assume that the
distribution of errors is normal, we can then specify
a 95% level of uncertainty as being:

Height Son = 86.07+ 0.514(Height Father)
±1.96(6.19) (2)
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Fig. 10. Residual errors vs heights of sons.
(6.19 is the standard deviation of residuals).

Thus,

Height of Son = 178.59± 12.3.

Even in this simple example, ±12.3 cm indicates a
lot of uncertainty in the prediction, which also suffers
from the fact that the distribution of errors is not
entirely normal. In addition, there is another problem
that seriously affects uncertainty. If the errors are
plotted against the heights of the sons (Fig. 10), they
show a strong correlation, implying that expression
(1) underestimates short heights and overestimates
tall ones. It is doubtful, therefore, that the forecast
specified by expression (1) is the best available for
the heights of sons, while the uncertainty shown in
expression (2) cannot be estimated correctly, as the
errors are highly correlated. Finally, there is an extra
problem when forecasting using relationships: the
values of the independent variables must, in the great
majority of cases, be predicted (this is not the case with
(1) as the height of the father is known), adding an
extra level of uncertainty to the desired prediction.

Forecasts from econometric models used to be pop-
ular, giving rise to an industry with revenues in the
hundreds of millions of dollars. Today, econometric
models have somewhat fallen out of fashion, as em-
pirical studies have showed that their predictions were
less accurate than those of time series methods like
Box–Jenkins. Today, they are only used by govern-
mental agencies and international organizations for
simulating policy issues and better understanding the
consequences of these issues. Their predictive ability
is not considered of value (see Orrell & McSharry,
2009), as their limitations have been accepted by even
the econometricians themselves, who have concen-
trated their attention on developing more sophisticated
models that can better fit the available data.

Taleb (2007) revisits the idea that such conse-
quences need to be taken into account in decision mak-
ing. He shows that forecasting has a purpose, and it is
the purpose that may need to be modified when we are
faced with large forecasting errors and huge levels of
uncertainty that cannot be assessed reliably.

2.4. Judgmental forecasting and uncertainty

Empirical findings in the field of judgmental
psychology have shown that human judgment is
even less accurate at making predictions than simple
statistical models. These findings go back to the
fifties with the work of psychologist Meehl (1954),
who reviewed some 20 studies in psychology and
discovered that the “statistical” method of diagnosis
was superior to the traditional “clinical” approach.



S. Makridakis, N. Taleb / International Journal of Forecasting 25 (2009) 716–733 727
When Meehl published a small book about his
research findings in 1954, it was greeted with outrage
by clinical psychologists all over the world, who
felt professionally diminished and dismissed his
findings. Many subsequent studies, however, have
confirmed Meehl’s original findings. A meta-analysis
by Grove, Zald, Lebow, Snitz, and Nelson (2000)
summarized the results of 136 studies comparing
clinical and statistical predictions across a wide range
of environments. They concluded by stating:

“We identified no systematic exceptions to the general
superiority (or at least material equivalence) of
mechanical prediction. It holds in general medicine,
in mental health, in personality, and in education and
training settings. It holds for medically trained judges
and for psychologists. It holds for inexperienced and
seasoned judges”.

A large number of people can be wrong, and know
that they can be wrong, brought about by the comfort
of a system. They continue their activities “because
other people do it”. There have been no studies
examining the notion of the diffusion of responsibility
in such problems of group error.

As Goldstein and Gigerenzer (2009) and Wright
and Goodwin (2009) point out, the biases and
limitations of human judgment affect its ability to
make sound decisions when optimism influences its
forecasts. In addition, it seems that the forecasts of
experts (Tetlock, 2005) are not more accurate than
those of other knowledgeable people. Worse, Tetlock
found out that experts are less likely to change their
minds than non-experts, when new evidence appears
disproving their beliefs.

The strongest evidence against the predictive
value of human judgment comes from the field
of investment, where a large number of empirical
comparisons have proven, beyond the slightest doubt,
that the returns of professional managers are not better
than a random selection of stocks or bonds. As there
are around 8500 investment funds in the USA, it
is possible that a fund can beat, say, the S&P500,
for 13 years in a row. Is this due to the ability of
its managers or to chance? If we assume that the
probability of beating the S&P 500 each year is 50%,
then if there were 8192 funds, it would be possible
for one of them to beat the S&P500 for 13 years in
a row by pure chance. Thus, it is not obvious that
the funds that outperform the market for many years
in a row do so by the ability of their managers and
rather than because they happen to be lucky. So far
there is no empirical evidence that has conclusively
proven that professional managers have consistently
outperformed the broad market averages due to their
own skills (and compensation). In addition to the field
of investments, Makridakis, Hogarth, and Gaba (2009)
have concluded that in the areas of medicine, as well as
business, the predictive ability of doctors and business
gurus is not better than simple benchmarks. These
findings raise the question of the value of experts: why
pay them to provide forecasts that are not better than
chance, or than simple benchmarks like the average or
the latest available value?

Another question is, how well can human judgment
assess future uncertainty? Empirical evidence has
shown that the ability of people to correctly assess
uncertainty is even worse than that of accurately
predicting future outcomes. Such evidence has
shown that humans are overconfident of positive
expectations, while ignoring or downgrading negative
information. This means that when they are asked
to specify confidence intervals, they make them too
tight, while not considering threatening possibilities
like the consequences of recessions, or those of
the current subprime and credit crisis. This is a
serious problem, as statistical methods also cannot
predict recessions and major financial crises, creating
a vacuum resulting in surprises and financial hardships
for large numbers of people, as nobody has provided
them with information to enable them to consider
the full range of uncertainty associated with their
investments or other decisions and actions.

3. A summary of the eight papers of this issue

This introductory paper by Makridakis and Taleb
demonstrates the limited predictability and high level
of uncertainty in practically all important areas of our
lives, and the implications of this. It presents empirical
evidence proving this limited predictability, as well
as examples illustrating the major errors involved
and the high levels of uncertainty that cannot be
adequately assessed because the forecasting errors are
not independent, normally distributed and constant.
Finally, the paper emphasizes the need to be rational
and realistic about our expectations from forecasting,
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and avoid the common illusion that predictions can be
accurate and that uncertainty can be assessed correctly.

The second paper, by Orrell and McSharry, states
that complex systems cannot be reduced to simple
mathematical laws and be modeled appropriately.
The equations that attempt to represent them are
only approximations to reality, and are often highly
sensitive to external influences and small changes in
parameterization. Most of the time they fit past data
well, but are not good for predictions. Consequently,
the paper offers suggestions for improving forecasting
models by following what is done in systems biology,
integrating information from disparate sources in
order to achieve such improvements.

The third paper, by Taleb, provides evidence of
the problems associated with econometric models, and
proposes a methodology to deal with such problems
by calibrating decisions, based on the nature of the
forecast errors. Such a methodology classifies decision
payoffs as simple or complex, and randomness as thin
or fat tailed. Consequently, he concentrates on what he
calls the fourth quadrant (complex payoffs and fat tail
randomness), and proposes solutions to mitigate the
effects of possibly inaccurate forecasts based on the
nature of complex systems.

The fourth paper, by Goldstein and Gigerenzer,
provides evidence that some of the fast and frugal
heuristics that people use intuitively are able to make
forecasts that are as good as or better than those of
knowledge-intensive procedures. By using research on
the adaptive toolbox and ecological rationality, they
demonstrate the power of using intuitive heuristics
for forecasting in various domains, including sports,
business, and crime.

The fifth paper, by Ioannidis, provides a wealth
of empirical evidence that while biomedical research
is generating massive amounts of information about
potential prognostic factors for health and disease, few
prognostic factors have been robustly validated, and
fewer still have made a convincing difference in health
outcomes or in prolonging life expectancy. For most
diseases and outcomes, a considerable component of
the prognostic variance remains unknown, and may
remain so in the foreseeable future. Ioannidis suggests
that in order to improve medical predictions, a
systematic approach to the design, conduct, reporting,
replication, and clinical translation of prognostic
research is needed. Finally, he suggests that we
need to recognize that perfect individualized health
forecasting is not a realistic target in the foreseeable
future, and we have to live with a considerable degree
of residual uncertainty.

The sixth paper, by Fink, Lipatov and Konitzer,
examines the accuracy and reliability of the diagnoses
made by general practitioners. They note that only
10% of the results of consultations in primary care
can be assigned to a confirmed diagnosis, while 50%
remain “symptoms”, and 40% are classified as “named
syndromes” (“picture of a disease”). In addition, they
provide empirical evidence collected over the last
fifty years showing that less than 20% of the most
frequent diagnoses account for more than 80% of
the results of consultations. Their results prove that
primary care has a severe “black swan” element
in the vast majority of consultations. Some critical
cases involving “avoidable life-threatening dangerous
developments” such as myocardial disturbance, brain
bleeding and appendicitis may be masked by those
often vague symptoms of health disorders ranked in
the 20% of most frequent diagnoses. They conclude
by proposing that (1) primary care should no longer
be defined only by “low prevalence” properties, but
also by its black-swan-incidence-problem; (2) at the
level of everyday practice, diagnostic protocols are
necessary to make diagnoses more reliable; and (3) at
the level of epidemiology, a system of classifications
is crucial for generating valid information by which
predictions of risks can be improved.

The seventh paper, by Makridakis, Hogarth and
Gaba, provides further empirical evidence that accu-
rate forecasting in the economic and business world
is usually not possible, due to the huge uncertainty,
as practically all economic and business activities are
subject to events which we are unable to predict. The
fact that forecasts can be inaccurate creates a serious
dilemma for decision and policy makers. On the one
hand, accepting the limits of forecasting accuracy im-
plies being unable to assess the correctness of deci-
sions and the surrounding uncertainty. On the other
hand, believing that accurate forecasts are possible
means succumbing to the illusion of control and expe-
riencing surprises, often with negative consequences.
They suggest that the time has come for a new attitude
towards dealing with the future that accepts our limited
ability to make predictions in the economic and busi-
ness environment, while also providing a framework
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that allows decision and policy makers to face the
future — despite the inherent limitations of forecast-
ing and the huge uncertainty surrounding most future-
oriented decisions.

The eighth paper, by Wright and Goodwin, looks
at scenario planning as an aid to anticipation of the
future under conditions of low predictability, and
examines its success in mitigating issues to do with
inappropriate framing, cognitive and motivational
bias, and inappropriate attributions of causality.
They consider the advantages and limitations of
such planning and identify four potential principles
for improvement: (1) challenging mental frames,
(2) understanding human motivations, (3) augmenting
scenario planning through adopting the approach of
crisis management, and (4) assessing the flexibility,
diversity, and insurability of strategic options in a
structured option-against-scenario evaluation.

The ninth paper, by Green, Armstrong and
Soon, proposes a no change, benchmark model for
forecasting temperatures which they argue is the
most appropriate one, as temperatures exhibit strong
(cyclical) fluctuations and there is no obvious trend
over the past 800,000 years that Antarctic temperature
data from the ice-core record is available. These data
also show that the temperature variations during the
late 1900s were not unusual. Moreover, a comparison
between the ex ante projections of the benchmark
model and those made by the Intergovernmental
Panel on Climate Change at 0.03 ◦C-per-year were
practically indistinguishable from one another in the
small sample of errors between 1992 through 2008.
The authors argue that the accuracy of forecasts from
the benchmark is such that even perfect prediction
would be unlikely to help policymakers in getting
forecasts that are substantively more accurate than
those from a no change, benchmark model.

Because global warming is an emotional issue,
the editors believe that whatever actions are taken to
reverse environmental degradation cannot be justified
on the accuracy of predictions of mathematical or
statistical models. Instead, it must be accepted that
accurate predictions are not possible and uncertainty
cannot be reduced (a fact made obvious by the
many and contradictory predictions concerning global
warming), and whatever actions are taken to protect
the environment must be justified based on other
reasons than the accurate forecasting of future
temperatures.

The tenth paper, by the late David Freedman,
shows that model diagnostics have little power un-
less alternative hypotheses can be narrowly defined.
For instance, independence of observations cannot
be tested against general forms of dependence. This
means that the basic assumptions in regression mod-
els cannot be inferred from the data. The same is true
with the proportionality assumption, in proportional-
hazards models, which is not testable. Specifica-
tion error is a primary source of uncertainty in
forecasting, and such uncertainty is difficult to re-
solve without external calibration, while model-based
causal inference is even more problematic to test.
These problems decrease the value of our models and
increase the uncertainty of their predictions.

The final paper of this issue, written by the
editors, is a summary of the major issues surrounding
forecasting, and also puts forward a number of
ideas aimed at a complex world where accurate
predictions are not possible and where uncertainty
reigns. However, once we accept the inaccuracy of
forecasting, the critical question is, how can we plan,
formulate strategies, invest our savings, manage our
health, and in general make future-oriented decisions,
accepting that there are no crystal balls? This is where
the editors believe that much more effort and thinking
is needed, and where they are advancing a number
of proposals to avoid the negative consequences
involved while also profiting from the low levels of
predictability.

4. The problems facing forecasters

The forecasts of statistical models are “mechan-
ical”, unable to predict changes and turning points,
and unable to make predictions for brand new situa-
tions, or when there are limited amounts of data. These
tasks require intelligence, knowledge and an ability to
learn which are possessed only by humans. Yet, as
we saw, judgmental forecasts are less accurate than
the brainless, mechanistic ones provided by statistical
models. Forecasters find themselves between Caryb-
dis and Scylla. On the one hand, they understand the
limitations of the statistical models. On the other hand,
their own judgment cannot be trusted. The biggest ad-
vantage of statistical predictions is their objectivity,
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Table 3
Values of daily statistics for DJIA and Paris temperatures for each decade from 1900 to 2008.
which seems to be more important than the intelli-
gence, knowledge and ability of humans to learn. The
problem with humans is that they suffer from incon-
sistency, wishful thinking and all sorts of biases that
diminish the accuracy of their predictions. The biggest
challenge and only solution to the problem is for
humans to find ways to exploit their intelligence,
knowledge and ability to learn while avoiding their in-
consistencies, wishful thinking and biases. We believe
that much work can be done in this direction.

Below, we summarize the problem of limited
predictability and high levels of uncertainty using the
daily values of the DJIA and the Paris temperatures.
The availability of fast computers and practically
unlimited memory has allowed us to work with long
series and study how well they can forecast and
identify uncertainty. Table 3 shows various statistics
for the daily % changes in the DJIA and the daily
changes in Paris temperatures, for each decade from
1900 to 2008 (the 2000 to 2008 period does not cover
the whole decade). Table 3 allows us to determine
how well we can forecast and assess uncertainty for
the decade 1910–1920, given the information for the
decade 1900–1910, for the decade 1920–1930 given
the information for 1910–1920, and so on.

4.1. The mean percentage change of the DJIA and the
average change in Paris temperature

The mean percentage change in the DJIA for the
decade 1900–1910 is 0.019%. If such a change had
been used as the forecast for the decade 1910–1920,
the results would have been highly accurate. In ad-
dition, the volatility in the daily percentage changes
from 1900–1910 would have been an excellent pre-
dictor for 1910–1920. The same is true with both the
means and the standard deviations of the changes in
daily temperatures, as they are very similar in the
decades 1900–1910 and 1910–1920. Starting from the
decade 1920–1930 onwards, however, both the means
and the standard deviations of the percentage daily
changes in the DJIA vary a great deal, from 0.001%
in the 1930s to 0.059% in the 1990s (this means that
$10,000 invested at the beginning of 1930 would have
become $10,334 by the end of 1939, while the same
amount invested at the beginning of 1990 would have
grown to $44,307 by the end of 1999). The differences
are equally large for the standard deviations, which
range from 0.65% in the 1960s to 1.85% in the 1930s.
On the other hand, the mean daily changes in temper-
atures are small, except possibly for the 2000–2008
period, when they increased to 0.005 of a degree. In
addition, the standard deviations have remained pretty
much constant throughout all eleven decades.

Table 3 conveys a clear message. Forecasting for
some series, like the DJIA, cannot be accurate, as the
assumption of constancy of their patterns, and possibly
relationships, is violated. This means that predicting
for the next decade, or any other forecasting horizon,
cannot be based on historical information, as both the
mean and the fluctuations around the mean vary too
much from one decade to another. Does the increase to
0.005 in the changes in daily Paris temperature for the
period of 2000–2008 indicate global warming? This is
a question we will not attempt to answer, as it has been
dealt with in the paper by Green et al. in this issue.
However, the potential exists that even in series like
temperature we have to worry about a possible change
in the long term trend.

Another technique for looking at differences is
departures from normality. Consider the kurtosis of
the two variables. The 5 largest observations in the
temperature represent 3.6% of the total kurtosis. For
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the Dow Jones, the 5 largest observations represent
38% of the kurtosis (e.g., the kurtosis in the decade
1970–1980 is 1.89, while that of the following decade
is an incredible 68.84—see Table 3). Furthermore,
under aggregation (i.e., by taking longer observation
intervals of 1 week, 1 fortnight, or 1 month), the
kurtosis of the temperature drops, while that of the
stock market does not change.

In real life, most series behave like the DJIA;
in other words, humans can influence their patterns
and affect the relationships involved by their actions
and reactions. In such cases, forecasting is extremely
difficult or even impossible, as it involves predicting
human behavior, something which is practically
impossible. However, even with series like the
temperature human intervention is also possible,
although there is no consensus in predicting its
consequences.

4.2. The uncertainty in predicting changes in DJIA
and Paris temperatures

Having data since 1900 provides us with a unique
opportunity to break it into sub-periods and obtain
useful insights by examining their consistency (see
Table 3), as we have already done for the mean, and we
can now assess the uncertainty in these two series. The
traditional approach to assessing uncertainty assumes
normality and then constructs confidence intervals
around the mean. Such an approach cannot work for
the percentage changes in the DJIA for three reasons.
First, the standard deviations are not constant; second,
the means also change substantially from one decade
to another (see Table 3); and finally, the distribution
is not normal (see Fig. 6). Assessing the uncertainty
in the changes in Paris temperatures does not suffer
from the first or second problem, as the means and
standard deviations are fairly constant. However, the
distribution of changes is not quite normal (see Fig. 5),
as there are a considerable number of extremely large
and small changes, while there are more values around
the mean than in a normal curve.

There is an additional problem when attempting
to assess uncertainty. The distribution of changes
also varies a great deal, as can be seen in Fig. 11.
Worse, this is true not only in the DJIA data, but also
in the temperature data. In the 1970s, for instance,
the distribution of the DJIA percentage changes was
close to normal with not too fat tails (the skew-
ness and kurtosis of the distribution were 0.33 and
1.89 respectively), while that of the 1980s was too
tall in the middle (the kurtosis was 68.84, versus
1.89 in the 1970s) with considerable fat tails on both
ends. Given the substantial differences in the distri-
butions of changes, or errors, is it possible to talk
about assessing uncertainty in statistical models when
(a) the distributions are not normal, even with series
like temperatures; (b) the means and standard devia-
tions change substantially; and (c) the distributions or
errors are not constant? We believe that the answer is a
strong no, which raises serious concerns about the re-
alism of financial models that assume that uncertainty
can be assessed assuming that errors are well behaved,
with a zero mean, a constant variance, a stable distri-
bution and independent errors.

The big advantage of series like the DJIA and
the Paris temperatures is the extremely large number
of available data points that allows us to extract
different types of information, such as that shown
in Table 3, which is based on more than 2500
observations in the case of the DJIA, and 3650 for
the temperatures. Real life series, however, seldom
exceed a few hundred observations at most, making
it impossible to construct distributions similar to those
of Table 3. In such a case we are completely unable
to verify the assumptions required to assure ourselves
that there are not problems with the assessment
of uncertainty. Finally, there is another even more
important assumption, that of independence, that also
fails to hold true, and negatively affects both the
task of forecasting and that of assessing uncertainty.
For instance, it is interesting to note that between
September 15 and December 1, 2008, 52.7% of the
daily fluctuations in the DJIA were greater than the
mean ±3 (standard deviations). In the temperature
changes there are fewer big concentrations of extreme
values, but since 1977 we can observe that the
great majority of such values are negative, again
obliging us to question the independence of series like
temperatures, which seem to be also influenced by
non-random runs of higher and lower temperatures.

5. Conclusions

Forecasting the future is neither easy nor certain. At
the same time, it may seem that we have no choice. But
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(a) The distribution of daily percentage changes in the DJIA in the
1970s.

(b) The distribution of daily percentage changes in the DJIA in the
1980s.

(c) The distribution of daily changes in the Paris temperatures in
the 1970s.

(d) The distribution of daily changes in the Paris temperatures in
the 1980s.

Fig. 11. The distribution of daily changes in the DJIA and Paris temperatures.
in reality we do have a choice: we can make decisions
based on the potential sizes and consequences of
forecasting errors, and we can also structure our lives
to be robust to such errors. In a way, which is the
motivation of this issue, we can make deep changes
in the decision process affected by future predictions.

This paper has outlined the major theme of this
special section of the IJF. Our ability to predict
the future is limited, with the obvious consequence
of high levels of uncertainty. It has proved such
limited predictability using empirical evidence and
four concrete data sets. Moreover, it has documented
our inability to assess uncertainty correctly and
reliably in real-life situations, and has discussed the
major problems involved. Unfortunately, patterns and
relationships are not constant, while in the great
majority of cases: (a) errors are not well behaved, (b)
their valiance is not constant, (c) the distribution of
errors are not stable, and, worst of all, (d) the errors
are not independent of each other.
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