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Abstract 
              
  
This paper evaluates the ex ante performance of  rule-based time series forecasting systems 

proposed in earlier research.  We show that comparable performance can be obtained with a 

simpler alternative, a damped-trend version of exponential smoothing fitted to minimize the 

MAD criterion.  The results suggest that the performance of rule-based systems would be 

improved through this alternative and that time series forecasters should consider MAD fits in 

model development. 

 

(Combining forecasts, Exponential smoothing, Extrapolation, Expert systems, Judgment,  

 Rule-based forecasting)
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1.  Introduction 

 In an earlier paper in this journal, Collopy and Armstrong (C&A) (1992) proposed a rule-

based approach to time series forecasting.  Drawing on protocol analyses of five forecasting 

experts, the authors developed a comprehensive rule base, including some 99 rules, to combine 

the forecasts from four extrapolation methods according to 18 features of time series.  The four 

extrapolation methods included a random walk, time series regression, Brown’s double 

exponential smoothing for a linear trend, and Holt’s method of exponential smoothing for a 

linear trend.  Rule-based forecasting was tested on annual time series drawn from the Makridakis 

et al. (1982) forecasting competition and gave promising results.  Compared to the popular 

equal-weights combination of forecasts, rule-based forecasting performed significantly better at 

both short and long-term forecast horizons. 

 The C&A system requires considerable human intervention in identifying features of 

time series.  Vokurka et al. (1996) extended C&A’s research with a rule-based expert forecasting 

system (RBEFS) that uses predefined rules to automatically identify time series features and 

select an extrapolation method from several alternatives, including simple exponential 

smoothing, Gardner-McKenzie (1985) damped-trend exponential smoothing, classical 

decomposition, and a combination of all methods.  Using the same time series as C&A, Vokurka 

et al. also conducted experiments in which judgment was incorporated into RBEFS:  the user 

was allowed to select from a fixed set of built-in methods based on a judgmental appraisal of the 

  
   

 



 

time series.  Vokurka et al. found no significant difference between the performance of RBEFS 

and the C&A system. 

This paper compares the C&A and Vokurka et al. rule-based forecasting systems to a 

simpler alternative:  damped-trend exponential smoothing alone, fitted to minimize the MAD.  

The C&A system did not use damped-trend smoothing as one of the candidate methods for 

combining forecasts.  Vokurka et al.’s REBFS included damped-trend smoothing but the MSE 

was used in model-fitting. 

 

2.  Model-fitting criteria in time series forecasting 

Referees for this paper pointed out that a MAD fit is unconventional in time series 

forecasting.  They are correct.  A literature search showed that most empirical research has 

followed the precedent set in the M-Competition (Makridakis et al., 1982), using the MSE as a 

model-fitting criterion, with ex ante forecast accuracy judged by other criteria.  The only 

exception appears to be the work of Weiss and Andersen (1984), who reexamined the ARIMA 

results for 80 series drawn from Makridakis’ subset of 111 series (31 series were deemed not 

suitable for ARIMA modeling).  In one-step-ahead forecasting, Weiss and Andersen found little 

difference between the forecasts from OLS estimation and those from models estimated to 

minimize the MAD or mean APE.  However, when trace estimation methods were used, the 

conclusions changed.  A trace is a sequence of forecasts from leadtime one through some 

maximum value.   If the maximum is six periods, and the holdout sample is six, the trace consists 

of six forecasts at one-step-ahead, five at two-steps-ahead, four at three-steps-ahead, and so on.  

The mean trace forecast error is the average of all forecast errors over all leadtimes.  Models 

fitted to minimize trace MAD or mean APE were superior to OLS, regardless of whether trace 
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absolute errors or trace squared errors were used for ex ante evaluation.  Fildes and Makridakis 

(1988) found the Weiss and Andersen conclusions ambiguous because they apply only to trace 

forecasting using a trace-estimated model, and I agree.  The Weiss and Andersen results are not 

comparable to Makridakis et al. and it is not clear how the results might be generalized. 

In a theoretical argument, Zellner (1986) maintained that one should match the error 

measure used in model development with the error measure used in ex ante model evaluation.  

Fildes and Makridakis (1988) responded that there was no empirical evidence that matching 

these error measures made any practical difference in ex ante model evaluation.  Makridakis and 

Hibon (1992) agreed. 

 Later work by Armstrong and Collopy (1992) showed that the MSE is an unreliable 

statistic for ex ante forecast evaluation.  Furthermore, the MSE produces poor outlier protection 

and only fair construct validity.  Fildes (1992) made a number of other arguments against the 

MSE in the context of ex ante evaluation in large numbers of time series.  Neither Armstrong 

and Collopy nor Fildes discussed model-fitting and I could find no evidence that the work of 

these authors has been used to justify the MAD as a model-fitting criterion.  This is surprising.  

In my opinion it is difficult to defend the MSE in model-fitting, given that it is such a poor 

choice for ex ante evaluation.  The results below appear to be the first reported test of model-

fitting criteria in exponential smoothing, certainly the most widely-used time series 

methodology. 
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3.  The damped-trend exponential smoothing system 

 The forecasting system is based on the class of autoregressive-damping systems, also 

known as damped-trend systems, developed by Gardner and McKenzie (1985).  In error-

correction form, the damped trend is written: 

S S T h et t t= + +− −1 1 t1φ ,         (1) 
 
T T ht t= +− etφ 1 2 ,          (2) 

$ ( )X m S Tt t
i

i

m

t= +
=
∑φ

1
.          (3) 

 

The one-step-ahead forecast error is defined as e X Xt t t= − −$ 1  (1).  St and Tt are the level and 

trend components of the series.  There are two smoothing parameters, h1 and h2, for level and 

trend, and an autoregressive-damping parameter φ to control the rate of growth in the forecasts. 

 It may not be obvious that a number of options are available for fitting the damped-trend 

system.  Each parameter can be constrained to one of at least three regions:  the range 0 to 1, the 

region defined by discounted-least-squares, or to much larger regions of stability.  Although a 

grid search for parameters is common in practice, more sophisticated search algorithms are 

readily available.  Initial values for the level and trend components may be computed through 

backcasting, time series regression, or simple averages of the first few data observations.  

Outliers can be identified during model-fitting and adjusted prior to a final fit.  The system can 

be fitted to minimize the MSE, the MAD, or other error measures.  Following the fit, the user 

can also adjust the forecasts to compensate for any first-order autocorrelation found in the 

residuals.  For more details of the options in model-fitting, see Gardner (1985). 
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4.  Fitting the damped trend to the Makridakis data 

 In this study, all parameters were constrained to the range 0 to 1 using a grid-search 

algorithm.  Initial values of model components were computed using the first five data 

observations.  The average difference amongst these observations was taken as the initial trend, 

with the initial level set equal to the first data observation.  Outliers in the residuals from model-

fitting were identified and the original data were adjusted.  The procedure was to compute 95% 

normal probability limits around the residuals from an initial fit.  If an error fell outside the 

probability limits, the corresponding data observation was set equal to the forecast.  Next, the 

model was refitted to the adjusted data.  Ex ante forecast errors were computed only once, after 

the refit. The residuals of few series contained significant first-order autocorrelation, so no such 

adjustments were made. 

On a priori grounds, the damped-trend model was fitted to minimize the MAD.   In the 

exponential smoothing software used in this study, Peer Planner (Delphus, 1997), it is 

convenient to use either the MSE or MAD to fit any model.  The MAD was selected because 

both C&A and Vokurka et al. evaluated forecasting performance strictly by absolute error 

criteria. 

Another problem in model-fitting was that early data was irrelevant in some series and 

distorted the smoothing parameters.  We scanned graphs of the fit periods and judgmentally 

identified 16 of 126 series with irrelevant early data.  In 9 of the 16 problem series, the first one 

or two observations were much smaller than the remainder, which interfered with estimation of 

the initial trend.  In the remaining 7 series, initial trend estimates were distorted by huge 

discontinuities early in the fit periods.  Like C&A, we simply trimmed irrelevant early data 

rather than attempt any type of data adjustment, although the trimming was not the same in each 
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case.  Details of the fit periods by series are available from the author.  The effects of trimming 

are evaluated below. 

Although we did not test the effects of all alternative model-fitting options, at the request 

of the referees we did compute differences in ex ante forecast accuracy for all combinations of  

MAD and MSE fits, data with and without outlier adjustments, and data with and without 

trimmed fit periods.  Table 1 shows median and mean APE results for the complete set of 126 

annual time series analyzed by Vokurka et al.  In all series, the damped-trend system was fitted 

through period n-6, where n is the total number of observations. Ex ante median and mean APEs 

were computed through forecast horizons 1-6 and for the cumulative forecasts. The damped-

trend results can be replicated using the Peer Planner system, with fit options set as described 

above. 

The MAD fit gave better ex ante median and mean APEs than the MSE fit at every 

forecast horizon, regardless of whether outliers were adjusted or fit periods were trimmed.  For 

both MAD and MSE fits, the effect of outlier adjustment was to increase the cumulative median 

APE, with mixed results at the individual forecast horizons.  This was true, regardless of whether 

the fit periods were trimmed.  For example, compare runs 1 and 2 in Table 1.  Run 1 is the base 

case (using original data) and produced a cumulative median APE of 7.8%.  In run 2, outlier 

removal increased the cumulative median APE to 8.1%.  Now compare runs 3 and 4.  In run 3, 

outliers were not removed but fit periods were trimmed, producing a cumulative median APE of 

7.6%.  This value increased to 7.8% in run 4 after outlier removal. 

In retrospect, outlier removal was not a good decision for this data.  However, trimmed 

fit periods made a small improvement in the cumulative median APE.   The effects of outlier 

removal and trimmed fit periods were offsetting.  Run 4 included both outlier adjustments and 
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trimmed fit periods and produced exactly the same cumulative median APE as the base case in 

run 1. 

 

 

 

TABLE 1. 
Effects of model-fitting options on the damped trend, 126 series. 

     
 Outliers Fit periods Fit Ex ante Ex ante APE by horizon 

Run removed? trimmed? Criterion error measure 1 2 3 4 5 6 Cum. 
1 No No MAD Median APE 3.3 4.6 7.2 11.1 12.0 15.9 7.8 
2 Yes No MAD Median APE 2.7 4.8 8.2 10.9 12.4 15.3 8.1 
3 No Yes MAD Median APE 3.2 4.6 7.2 10.6 12.0 15.4 7.6 
4 Yes Yes MAD Median APE 2.6 4.6 7.6 9.8 12.3 14.8 7.8 
            

5 No No MAD Mean APE 6.9 9.4 14.3 17.7 19.4 23.9 15.3 
6 Yes No MAD Mean APE 6.5 8.9 14.0 17.6 19.4 23.6 15.0 
7 No Yes MAD Mean APE 6.5 8.8 13.5 16.9 18.2 22.7 14.4 
8 Yes Yes MAD Mean APE 6.1 8.4 13.4 16.9 18.4 22.6 14.3 
            

9 No No MSE Median APE 3.4 5.6 8.1 11.6 13.5 15.4 8.4 
10 Yes No MSE Median APE 3.3 5.2 9.1 11.9 13.6 15.9 9.0 
11 No Yes MSE Median APE 3.4 5.5 8.3 11.9 13.7 15.4 8.5 
12 Yes Yes MSE Median APE 3.3 5.2 9.2 11.9 14.1 15.9 9.0 
            

13 No No MSE Mean APE 6.7 9.4 14.6 18.5 20.2 24.7 15.7 
14 Yes No MSE Mean APE 6.8 9.5 14.9 18.5 20.5 24.3 15.8 
15 No Yes MSE Mean APE 6.8 9.1 14.4 18.2 20.0 24.1 15.4 
16 Yes Yes MSE Mean APE 6.7 9.3 14.6 18.1 20.2 23.7 15.4 
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4.  Comparisons to C&A and Vokurka et al. 

Tables 2-4 (next page) compare the ex ante forecast accuracy of damped-trend smoothing 

with selected results from C&A and Vokurka et al.   The damped-trend results are taken from 

Run 4 in Table 1, with outlier removal and fit periods trimmed.  This option is shown because it 

was selected a priori.   In tables 2-4, it was not possible to test for statistical significance of 

differences from damped-trend smoothing because we did not have details of the individual 

errors by series in C&A and Vokurka et al. 

Table 2 makes median APE comparisons to Vokurka et al. for all 126 series (C&A do not 

give results for all series, since some were used for model development).  In Vokurka et al.’s  

“user procedure,” the user selected one of the built-in methods in RBEFS after a judgmental 

evaluation of the time series.   With the exception of a tie at horizon 2, damped-trend smoothing 

with a MAD fit was more accurate at all horizons than the user procedure or RBEFS. 

Although not shown in Table 2, any of the damped trend with MSE fit results (runs 9-12 

in Table 1) are better than Vokurka et al.’s expert system.  It is interesting that the damped trend 

with MSE fit, without outlier removal or trimming of fit periods (run 9 in Table 1) gives about 

the same accuracy as the Vokurka et al. user procedure.    

In Table 3, some rather involved comparisons are made to both C&A and Vokurka et al.  

for a subset of 90 series taken from the 126 used in Table 2.  Following C&A, these series are 

further subdivided into validation sets 1, 2, and 3, consisting of 18, 36, and 36 series 

respectively. C&A reported results only for horizons 1 and 6, so other horizons are not shown. 
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TABLE 2. 
Damped trend vs. Vokurka et al., 126 series. 
     
  Ex ante median APE by horizon 
Method  1 2 3 4 5 6 Cum. 
Damped trend (MAD fit) 2.6 4.6 7.6 9.8 12.3 14.8 7.8 
        
User procedure  3.6 4.6 8.4 12.1 13.1 15.1 8.4 
Expert system (RBEFS) 3.4 5.3 8.0 13.7 13.9 17.7 10.5 
Equal-weights combination 6.9 10.1 13.7 15.6 17.5 21.8 12.4 
Random walk  5.6 10.6 15.0 19.1 21.9 26.2 15.7 

     
 

TABLE 3. 
Ex ante median APE comparisons for 90 series (taken from the 126 series in Table 2 above). 
   
  1-step-ahead median APE 6-step-ahead median APE 
Source Method V1(18) V2(36) V3(36) Wtd.Avg. V1(18) V2(36) V3(36) Wtd.Avg.
Gardner Damped trend (MAD fit) 1.6 2.7 3.3 2.8 16.9 16.1 12.8 14.8 

   
C&A Rule-based forecasting 2.5 3.1 3.2 3.0 13.0 9.1 14.2 11.9 

   
Vokurka  et al. User procedure 3.2 3.1 4.0 3.5 22.5 15.8 11.6 15.5 

 Expert system (RBEFS) 4.2 3.0 4.0 3.6 22.4 16.8 14.5 17.0 
 Equal-weights comb. 7.0 6.7 7.1 6.9 25.1 21.3 19.4 21.3 
 Random walk 6.4 5.7 5.6 5.8 30.1 24.7 25.2 26.0 

  
 

TABLE 4. 
Ex ante median APE comparisons for 36 series (validation set 3 in Table 3 above). 
  
 Median APE Mean APE 
Source Method 1-yr. 6-yr. Cum. 1-yr. 6-yr. Cum.
Gardner Damped trend (MAD fit) 3.3 12.8 8.9 6.2 19.1 13.3 

  
C&A Rule-based forecasting 3.2 14.2 8.7 6.3 23.6 15.0 

  
Vokurka  et al. User procedure 4.0 11.6 7.7 6.7 20.0 11.4 

 Expert system (RBEFS) 4.0 14.5 9.8 6.7 23.6 14.0 
 Equal-weights comb. 7.1 19.4 10.4 8.5 24.7 15.7 
 Random walk 5.6 25.2 16.3 7.6 26.1 17.8 
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In interpreting Table 3, it is important to understand that the weighted average is not the 

median APE of all forecast errors but rather a weighted average of the medians for each 

validation set.   It would be useful to know the true cumulative median APE over all forecast 

horizons for all series, but these were not reported by C&A, except for validation set 3 as 

discussed below.   For the damped trend, cumulative median APEs differ substantially from 

weighted averages. 

In Table 3, compared to C&A, the damped trend is significantly more accurate in 

validation sets 1 and 2 at 1-step-ahead and gives about the same results in validation set 3.  At 6-

steps-ahead, the C&A system is significantly more accurate in validation sets 1 and 2, while the 

damped trend does better in validation set 3. 

How do we explain the differences in performance among validation sets?  This is a 

difficult question to answer because the C&A rule base is complex.  We can say that most series 

in validation set 3 are relatively well-behaved and easy to forecast while validation sets 1 and 2 

contain some ill-behaved series.   The C&A rule base appears to be less sensitive to such series, 

especially at long forecast horizons. 

To illustrate the problems in forecasting validation sets 1 and 2, eight time series are 

plotted in Figure 1.  These series were selected due to their disproportionate influence on 

summary ex ante error measures.  In Figure 1, symbols mark the forecast periods (which are 

always the last six periods).  Five series (numbers 27, 32, 62, 92, and 165) contain a cycle or 

abrupt trend reversal during the forecast periods.  For example, in series 32, the data grew by 

47% during the first five forecast periods but dropped by 75% in the last forecast period.  No 

time series model can be expected to cope with such an anomaly in the last forecast period.  The 

remaining series (numbers 5, 47, and 87) are characterized by drastic changes in rate of growth 
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from fit to forecast periods.  The worst of these is series 5, in which the data declined by 10% 

during the last six fit periods.  The result is that the damped-trend model projected a negative 

trend into the forecast periods but the data actually grew by 250% during the forecast periods.  

In general, the damped trend was confounded by the series in Figure 1 and produced 

huge errors during most forecast periods.  If the two series from validation set 1 (numbers 5 and 

165) are dropped, the 1-step-ahead median APE for the damped trend falls from 1.6% to 1.2%, 

while the 6-step-ahead value falls from 16.9% to 12.3%.  All other series in Figure 1 are from 

validation set 2.  Dropping them reduces the 1-step-ahead median APE from 2.7% to 1.8%, with 

a reduction from 16.1% to 15.9% at 6-steps-ahead.  

To understand the minor reduction at 6-steps-ahead, note that the last observation in the 

forecast periods was usually out of character with the rest of the forecast periods and reverted to 

the long-term trend in the series.  As an example, see series 32 in which the last observation falls 

back to a level near that at the beginning of the forecast periods. 

In Table 3, compared to Vokurka et al.’s user procedure and RBEFS, the damped trend is 

more accurate at 1-step-ahead in all validation sets.   The damped trend is also more accurate at 

6-steps-ahead in validation set 1 and less accurate in validation sets 2 and 3. 

Table 4 gives more detailed results for the 36 series in validation set 3.  The damped 

trend and C&A produce about the same cumulative median APE over all forecast horizons but 

the Vokurka et al. user procedure is superior to both.   On the mean APE criterion, the damped 

trend gives a better cumulative value than C&A, but again the Vokurka et al. user procedure 

wins. 
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Figure 1.  Examples of series with changing patterns during the forecast periods.
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5.  Conclusions 

 Damped-trend smoothing is more accurate than either Vokurka et al.’s user procedure or 

RBEFS at all forecast horizons, using the complete sample of 126 series.  When the 126 series 

are divided into validation sets or subsamples, relative performance depends on the subsample.  

The relative performance of damped-trend smoothing and C&A also depends on the subsample, 

although it may be that damped-trend smoothing is a better short-term forecaster, with C&A 

superior in the long term. 

 Therefore it is difficult to argue that the C&A or Vokurka et al. systems are consistently 

more accurate than damped-trend smoothing alone.  This conclusion is important because 

damped-trend smoothing is much simpler, in terms of operation as well as understanding on the 

part of the user. 

While the C&A and Vokurka et al. systems in their present form contain worthwhile 

features, it should be possible to improve the performance of both.  In the case of C&A, damped-

trend smoothing should be incorporated as one of the candidate models for combining forecasts, 

perhaps as a replacement for one of the two linear-trend smoothing methods.  In the Vokurka et 

al. systems, damped-trend smoothing is already a candidate, but median and mean APE 

performance should improve if the damped trend is fitted as described above. 

When should forecasters prefer a MAD rather an MSE fit?  Given the odd time series 

displayed in Figure 1, my opinion is that it is unreasonable to generalize that a MAD fit should 

produce better ex ante median and mean APEs.  The time series in this study are also relatively 

short and there is no risk of confounding seasonality with trend.   In longer, more complex time 

series, MAD fits may well produce different results. 
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More research is planned to evaluate the effects of  MAD vs. MSE fits.   Pending further 

research, forecasters should compare ex ante APE results for both model-fitting options.  When 

forecasting with exponential smoothing, the choice of model-fitting criterion can easily be 

automated. 
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