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  This chapter presents growth models for cases in which when little 

historical data exist.  The growth models are also used in scenario analysis 
for long-term trend extrapolation based on alternative assumptions about 
the future.    

 
  If you have no data at all, use the worksheet in section 5.1, which projects a 

variety of assumed growth patterns into the future.  When data develop, use 
the models in sections 5.2-5.5 to fit growth curves or functions of time using 
ordinary-least-squares regression. The linear growth model (Section 5.2) 
predicts a constant amount of growth each time period, while the 
exponential (Section 5.3) predicts constant percentage growth.  In both 
linear and exponential growth, the forecasts are unbounded.  In the 
modified exponential (Section 5.4) and logistic (Section 5.5) models, the 
amount of growth declines each period, so the forecasts are bounded by a 
saturation level. 
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5.1 Forecasting with no data (GROWCOMP)  
It is heroic to forecast with no data but there may be no alternative.  Data may not exist for 
new products, markets, or business locations or for budgeting new categories of costs or 
expenses.  GROWCOMP in Figure 5-1 is a handy tool for analyzing assumptions about 
future data.  The basic idea is to assume data values for the first period in the future and for 
some later period, perhaps when we believe the data or market will stabilize.   Models are 
then used to fill in unknown data between these two periods, using a variety of alternative 
growth patterns.  One of these patterns should be more credible than the others and should 
help develop a final forecast.  This procedure saves a lot of work in creating assumed 
growth patterns and makes the forecasting process more objective. 
 
In Figure 5-1, suppose the year is 1950 and we are interested in predicting the development 
of the television market, specifically the annual percentage of households in the U.S. that 
will purchase one or more television sets.  Alternative growth patterns or trends are 
computed based on the set of assumptions shown at the top of the worksheet.  First, you 
specify the data for the first year (1950) in cell C5.  Assume perfect hindsight and use the 
actual penetration value listed in column Q (not shown in Figure 5-1). Thus the first year's 
data in C5 is set at 9.00, meaning that we expect 9 per cent of households will own at least 
one television set in 1950.  Next, in cell C6, estimate the saturation  level, the maximum 
value of the data in the future or the point at which growth stops.  Here we assume 
saturation will occur at 99% penetration.  In cells G5 and G6, two additional assumptions 
are required:  a target period and value in the future.  We assume that in period 10 (1959), 
penetration will reach 85%. 
 
Using these assumptions, four alternative growth patterns are computed in columns C, F, I, 
and L:  linear, simple exponential, modified exponential, and logistic growth.   Equations 
used to compute each type of growth are shown in row 9.  (Note:  these equations are 
equivalent to those presented below for fitting regression models.)  Model coefficients are 
listed in rows 10-12.  Estimated data values are plotted in Figure 5-2, with percentage 
growth by period plotted in Figure 5-3. 
 
In Figure 5-2, all growth curves start at the same point, the first-year data assumption of 
9.00, and run through the target value of  85 in 1959.  The first option, linear growth, is a 
middle-ground assumption.  Growth is simply a constant amount each time period.  In 
percentage terms, linear growth declines more rapidly than the other models. 
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Figure 5-1 
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GROWTH
Growth model projections
TV penetration

First period data 9.00 Target period 10
Saturation level 99.00 Target data 85.00

LINEAR GROWTH SIMPLE EXPONENTIAL MODIFIED EXPONENTIAL LOGISTIC

a = 0.556 a = 7.0128 a = 99.0000 a = 0.0101
b = 8.444 b = #N/A b = 110.6708 b = -0.1594
r = #N/A r = 0.2834 r = 0.8132 r = 0.6337

Growth Growth Growth Growth Growth Growth Growth Growth
Year Period  Forecast amount %  Forecast amount %  Forecast amount %  Forecast amount %
1950 1 9.00 9.00 9.00 9.00
1951 2 17.44 8.44 93.83% 11.55 2.55 28.34% 25.81 16.81 186.78% 13.49 4.49 49.93%
1952 3 25.89 8.44 48.41% 14.82 3.27 28.34% 39.48 13.67 52.96% 19.74 6.25 46.29%
1953 4 34.33 8.44 32.62% 19.02 4.20 28.34% 50.60 11.12 28.16% 27.93 8.19 41.50%
1954 5 42.78 8.44 24.60% 24.41 5.39 28.34% 59.64 9.04 17.87% 37.90 9.97 35.68%
1955 6 51.22 8.44 19.74% 31.33 6.92 28.34% 66.99 7.35 12.33% 48.97 11.07 29.22%
1956 7 59.67 8.44 16.49% 40.21 8.88 28.34% 72.97 5.98 8.92% 60.10 11.13 22.72%
1957 8 68.11 8.44 14.15% 51.61 11.40 28.34% 77.83 4.86 6.66% 70.20 10.11 16.82%
1958 9 76.56 8.44 12.40% 66.23 14.62 28.34% 81.78 3.95 5.08% 78.58 8.37 11.93%
1959 10 85.00 8.44 11.03% 85.00 18.77 28.34% 85.00 3.22 3.93% 85.00 6.42 8.18%
1960 11 93.44 8.44 9.93% 109.09 24.09 28.34% 87.61 2.61 3.08% 89.64 4.64 5.46%
1961 12 101.89 8.44 9.04% 140.00 30.91 28.34% 89.74 2.13 2.43% 92.86 3.21 3.59%
1962 13 110.33 8.44 8.29% 179.67 39.67 28.34% 91.47 1.73 1.93% 95.02 2.16 2.33%
1963 14 118.78 8.44 7.65% 230.58 50.91 28.34% 92.88 1.41 1.54% 96.44 1.42 1.50%
1964 15 127.22 8.44 7.11% 295.93 65.34 28.34% 94.02 1.14 1.23% 97.36 0.92 0.96%
1965 16 135.67 8.44 6.64% 379.78 83.86 28.34% 94.95 0.93 0.99% 97.96 0.59 0.61%
1966 17 144.11 8.44 6.22% 487.40 107.62 28.34% 95.71 0.76 0.80% 98.34 0.38 0.39%
1967 18 152.56 8.44 5.86% 625.52 138.12 28.34% 96.32 0.62 0.64% 98.58 0.24 0.25%
1968 19 161.00 8.44 5.54% 802.78 177.26 28.34% 96.82 0.50 0.52% 98.73 0.15 0.16%
1969 20 169.44 8.44 5.24% 1030.26 227.49 28.34% 97.23 0.41 0.42% 98.83 0.10 0.10%
1970 21 177.89 8.44 4.98% 1322.21 291.95 28.34% 97.56 0.33 0.34% 98.89 0.06 0.06%
1971 22 186.33 8.44 4.75% 1696.89 374.68 28.34% 97.83 0.27 0.28% 98.93 0.04 0.04%
1972 23 194.78 8.44 4.53% 2177.75 480.85 28.34% 98.05 0.22 0.22% 98.96 0.03 0.03%
1973 24 203.22 8.44 4.34% 2794.86 617.11 28.34% 98.23 0.18 0.18% 98.97 0.02 0.02%
1974 25 211.67 8.44 4.16% 3586.85 791.99 28.34% 98.37 0.14 0.15% 98.98 0.01 0.01%
1975 26 220.11 8.44 3.99% 4603.26 1016.42 28.34% 98.49 0.12 0.12% 98.99 0.01 0.01%
1976 27 228.56 8.44 3.84% 5907.71 1304.44 28.34% 98.58 0.10 0.10% 98.99 0.00 0.00%
1977 28 237.00 8.44 3.69% 7581.79 1674.08 28.34% 98.66 0.08 0.08% 99.00 0.00 0.00%
1978 29 245.44 8.44 3.56% 9730.27 2148.48 28.34% 98.72 0.06 0.06% 99.00 0.00 0.00%
1979 30 253.89 8.44 3.44% 12487.56 2757.30 28.34% 98.78 0.05 0.05% 99.00 0.00 0.00%
1980 31 262.33 8.44 3.33% 16026.20 3538.64 28.34% 98.82 0.04 0.04% 99.00 0.00 0.00%
1981 32 270.78 8.44 3.22% 20567.59 4541.39 28.34% 98.85 0.03 0.03% 99.00 0.00 0.00%
1982 33 279.22 8.44 3.12% 26395.90 5828.30 28.34% 98.88 0.03 0.03% 99.00 0.00 0.00%
1983 34 287.67 8.44 3.02% 33875.79 7479.89 28.34% 98.90 0.02 0.02% 99.00 0.00 0.00%
1984 35 296.11 8.44 2.94% 43475.27 9599.49 28.34% 98.92 0.02 0.02% 99.00 0.00 0.00%
1985 36 304.56 8.44 2.85% 55794.99 12319.72 28.34% 98.94 0.01 0.02% 99.00 0.00 0.00%

Y = a + bx Y = a(1+r)n Y = a - brn Y = 1 / (a-brn)
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Figure 5-2 
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Figure 5-3 

PERCENT GROWTH PROJECTIONS
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The second option, the simple exponential model, produces constant percentage growth.   
After the target value is reached, exponential growth quickly gets out of hand and reaches 
extreme penetration values.  But it takes some time for the simple exponential to build up 
steam compared to the other models.  The result is that simple exponential growth between 
any starting point and any target value is always more pessimistic than the other models. 
 
The modified exponential gives an excellent fit to the actual data in column Q (actual data 
are not plotted to avoid cluttering the graph).  Early growth from the modified exponential 
is sensational, more than 186% from 1950 to 1951.  The modified-exponential curve runs 
far above the other possibilities for every year until the target penetration is reached.  After 
that, the modified exponential gradually approaches the saturation level. Growth slows 
dramatically as the saturation level is approached.  The modified exponential always 
produces the most optimistic growth pattern between any two data values.  If you expect 
strong early growth in your data, use the modified exponential model as a planning tool. 
 
Finally, logistic growth should be used when you expect growth to follow an S-shaped 
pattern.  This curve is one of a large family of S-shaped curves that display slow growth at 
first, followed by a period of steep growth, and finally by a gradual decline in growth to 
the saturation level.  This type of forecasting model originated in the study of the spread of 
epidemics during the early part of this century.  Today the logistic is used for the same 
purpose as well as in forecasting the development of markets for both industrial and 
consumer goods.  The logistic is another middle-ground assumption, falling between the 
modified exponential and the simple exponential.  In terms of percentage growth in Figure 
5-3, the logistic always starts out somewhere below the modified exponential.  Gradually, 
the logistic catches up as the saturation level is approached. 
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Forecasting with no data is hazardous but the process is certainly more objective when you 
make some attempt to develop a model of the future.  Although an overwhelming variety 
of growth models are available in the literature of forecasting, the ones in this section are 
commonly used in practice and should at least give you a starting point for making 
predictions.  You can think of the area between the modified exponential and the simple 
exponential curves as the range of likely values for future data, often called the envelope of 
growth potential.  The size of this range depends on your assumptions about first-period 
data, target data, and saturation level.   Whatever your assumptions, we can summarize as 
follows:  the modified-exponential model generates the best-case scenario, while the 
simple exponential generates the worst case.  The linear and logistic models are middle-
ground possibilities. 
 
The most critical assumption in GROWCOMP worksheet is the first-period data value.  
You should spend most of your time estimating this number and you should do sensitivity 
analysis on the effects of alternative values.  Once you get an actual value for the first 
period, update the worksheet and look again at the assumptions for the saturation level and 
the target data in the future. 
 
After three or four data values have been observed, you should attempt to fit a forecasting 
model to your data.  Each of the growth models in GROWCOMP can be fitted to data as 
discussed in sections 5.2-5.5. 
 
Some will protest that you need a lot more than three or four data values to fit a forecasting 
model but in the real world you cannot afford to wait.  Something must be done to adjust 
the forecasts based on how the early data behave.  The best way to make such adjustments 
is to switch to a forecasting model based on the data.   
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5.2  Linear growth (LIN) 
 
Perhaps the simplest forecasting model is a straight line fitted to the data using ordinary-
least-squares regression.  The explanatory or X variable in the regression is time, a series 
of consecutive integers.  The regression line is computed to minimize the sum of squared 
differences between actual data and the line.  Linear-growth regression is appropriate when 
you expect the amount of growth each time period to be relatively constant.  An equivalent 
assumption is that percentage growth is expected to decline continuously.  It is important 
to understand that all past data are equally weighted in linear-growth regression.  If recent 
data should receive more weight, the trend-smoothing model in Chapter 4 is a better 
choice.   
 
The linear growth model is written: 
 
Yt  =  a + bt (5-1) 
 
Y is the dependent variable and the subscript t refers to time, a series of consecutive 
integers.  The regression constant or intercept (starting point) for the line is a.  The 
parameter b is the slope or amount of growth each period;  b is also called the X variable 
coefficient. 
 
Linear growth models are commonly used in modeling population data, as shown in 
Figures 5-4 and 5-5.  The population of DeWalt, Texas, has marched along a straight line 
since the city was incorporated in 1986 and the forecasts reflect a constant amount of 
annual growth.  
 
LIN requires installation of the Excel Data Analysis Toolbox.  Enter data in columns A 
and B, then enter the number of warm-up data and the last period to forecast in cells C10 - 
C11.  Next, select Tools, Data Analysis, Regression.  In the dialog box for the Y range, 
paint over cells in column B, starting at row 25.  Click on the box for the X range and paint 
over cells in Column C.  Ensure that the number of data used to fit the regression model 
agrees with the number of warm-up data in cell C10.  In the box for output range, enter O1. 
Finally, click OK. 
 
The estimated Y values in column D are computed using equation 5-1.  The a and b 
coefficients are found in the regression output (see Figure 5-6) in cells P17 - P18.  The 
intercept is 7105.45 and the slope is 232.60 per time period. 
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Figure 5-4 
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A B C D E F G H I
LIN.XLS DeWalt, Texas population INTERMEDIATE CALCULATIONS:
Linear regression on time RMSE (Square root of MSE) 45.58
Yt= a + bt 3 X RMSE 136.73
Select Tools, Data Analysis, Regression.  Enter ranges as follows:
Y range includes column B,  X range includes column C, Output range = O1. Warm-up SSE 33234.94
Ensure number of data selected for Y and X ranges agree with the Warm-up MSE 2077.18
nbr. of warm-up data entered in cell C10. Forecasting SSE 33234.94

Fcst SSE - Warm-up SSE 0.00
INPUT: Nbr. of forecast periods 0
Nbr. of warm-up data 16 Forecasting MSE 0.00
Last period to forecast 25

Warm-up Sum abs. err. 574.22
Warm-up MAD 35.89

OUTPUT: Forecasting Sum abs. err. 574.22
Number of data 16 Fcst Sum abs. - Warm-up Sum ab 0.00
Nbr. of outliers 0 Nbr. of forecast periods 0
Warm-up MSE 2077.18 Forecasting MAD 0.00
Forecasting MSE 0.00 Last forecast at period 25
Warm-up MAD 35.89
Forecasting MAD 0.00

Y range X-range
Mon/yr. Data t Est Y e = Y - Est Y e^2

1986 7,350 1 7338.05 11.95 142.77
1987 7,521 2 7570.65 -49.65 2465.41
1988 7,810 3 7803.25 6.75 45.50
1989 8,070 4 8035.86 34.14 1165.82
1990 8,254 5 8268.46 -14.46 209.02
1991 8,488 6 8501.06 -13.06 170.53
1992 8,812 7 8733.66 78.34 6137.11
1993 9,010 8 8966.26 43.74 1913.03
1994 9,165 9 9198.86 -33.86 1146.72
1995 9,324 10 9431.46 -107.46 11548.66
1996 9,666 11 9664.07 1.93 3.74
1997 9,874 12 9896.67 -22.67 513.82
1998 10,202 13 10129.27 72.73 5289.78
1999 10,342 14 10361.87 -19.87 394.84
2000 10,632 15 10594.47 37.53 1408.35
2001 10,801 16 10827.07 -26.07 679.83
2002 17 11059.68 #N/A #N/A
2003 18 11292.28 #N/A #N/A
2004 19 11524.88 #N/A #N/A
2005 20 11757.48 #N/A #N/A
2006 21 11990.08 #N/A #N/A
2007 22 12222.68 #N/A #N/A
2008 23 12455.28 #N/A #N/A
2009 24 12687.89 #N/A #N/A
2010 25 12920.49 #N/A #N/A

Regression ranges
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Figure 5-5 
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Figure 5-6 
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SUMMARY OUTPUT

Regression Statistics
Multiple R 0.999097862
R Square 0.998196538
Adjusted R Square 0.998067719
Standard Error 48.72293151
Observations 16

ANOVA
df SS MS F Significance F

Regression 1 18395171 18395171 7748.845615 1.30083E-20
Residual 14 33234.93676 2373.924055
Total 15 18428405.94

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 7105.45 25.55052084 278.0941354 1.33298E-27 7050.649534 7160.250466
X Variable 1 232.6014706 2.64237196 88.0275276 1.30083E-20 226.9341413 238.2687998
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A variety of other statistics are found in the regression output.  R square (often denoted r2) 

in cell P5 is a measure of the goodness of fit of the regression line, the proportion of total 
variation in the Y variable (population) that is explained by the relation with the X variable 
(time).  If all of the data fell on the regression line, R square would be 1.0.  The standard 
error in cell P7 is also called the standard error of the estimate and is the square root of the 
sum of the squared differences between actual and estimated Y values divided by n-2, 
where n is the number of data.  The reason for dividing by n-2 is that two degrees of 
freedom are lost in computing the regression line. 
 
The regression standard error is similar to the RMSE or square root of the mean-squared-
error value in cell I5.   Recall that three times the RMSE is used to set control limits in the 
control-chart graph (not shown here).  We will continue to use the RMSE to set control 
limits for consistency with the control charts for exponential smoothing in Chapter 4. 
 
Several statistical tests can be made on the significance of the linear relationship between 
X and Y.   First, an F statistic is computed in cell S12.  Although a full explanation is 
beyond our scope here, the F statistic is the ratio of explained to unexplained variation in 
Y.  When F is large, the regression line explains a large proportion of the variation in Y.   
The significance of F is computed in cell T12, interpreted as the probability that the true 
regression slope or X coefficient is actually equal to zero. This probability is very small, as 
it should be given the excellent fit of the regression line.  An equivalent test can be made 
with the t-statistic for the X variable in cell R18.  The t-statistic is the X coefficient divided 
by the standard error of the coefficient.  The P-value is the probability that the true X 
coefficient is actually zero and again is very small. 
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5.3  Exponential growth (EXP) 
 
A classic case of exponential growth is the behavior of IBM world-wide sales during the 
early days of the computer (Figures 5-7 and 5-8).   Percentage growth is roughly constant, 
with increasing amounts of growth each period. 
 
The exponential growth model is written: 
 
ln (Yt)  =  a + bt         (5-2) 
 
Data in column B are converted to logarithms in column D.  Logs convert exponential 
growth to linear growth so the standard linear regression functions can be used.  Column D 
is used as the Y input to the regression, with the X input as the series of consecutive 
integers in column C.  Estimated logs of the Y data are in column E, with antilogs (final 
forecasts) in column F. 
 
This example presents a forecast simulation because the warm-up data are set to 18 in cell 
C10.   Thus the Y-range for the regression is D25:D42 and the X-range is C25:C42 (the 
last 3 data are not used to compute the regression equation).  The model performs well in 
the forecast periods (1965-1967) with a forecasting MAD of 89.89 units per year.  Also 
note that the fit of the model is excellent with an R square value of 0.9916 in cell P5 (not 
shown here). 
 
The exponential growth model is most useful early in the life cycle of a product.  
Obviously, exponential growth cannot be sustained indefinitely so use this model with 
caution.   The model works well with relatively stable, well-behaved data.  If the growth 
rate in the data changes frequently or if the data contain a great deal of randomness or 
noise, a better choice is the trend exponential smoothing model from Chapter 4.  With the  
trend modifier set above 1.0, this smoothing model produces an exponential trend. 
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Figure 5- 7 
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A B C D E F G H I
EXP IBM World-wide sales INTERMEDIATE CALCULATIONS:
Exponential regression on time RMSE (Square root of MSE) 139.34
ln(Yt) = a + bt 3 X RMSE 418.02
Select Tools, Data Analysis, Regression.  Enter ranges as follows:
Y range includes column D,  X range includes column C, Output range = O1. Warm-up SSE 349478.33
Ensure number of data selected for Y and X ranges agree with the Warm-up MSE 19415.46
nbr. of warm-up data entered in cell C10. Forecasting SSE 378736.56

Fcst SSE - Warm-up SSE 29258.23
INPUT: Nbr. of forecast periods 3
Nbr. of warm-up data 18 Forecasting MSE 9752.74
Last period to forecast 21

Warm-up Sum abs. err. 1471.82
Warm-up MAD 81.77

OUTPUT: Forecasting Sum abs. err. 1741.49
Number of data 21 Fcst Sum abs. - Warm-up Sum ab 269.67
Nbr. of outliers 1 Nbr. of forecast periods 3
Warm-up MSE 19415.46 Forecasting MAD 89.89
Forecasting MSE 9752.74 Last forecast at period 21
Warm-up MAD 81.77
Forecasting MAD 89.89

X range Y range
Mon/yr. Data t ln(Y) Est ln(Y) Est Y e = Y - Est Y e^2

1947 144.54 1 4.97 4.91 135.30 9.24 85.35
1948 161.98 2 5.09 5.09 162.39 -0.41 0.17
1949 183.46 3 5.21 5.27 194.90 -11.44 130.88
1950 214.91 4 5.37 5.45 233.92 -19.01 361.37
1951 266.79 5 5.59 5.64 280.75 -13.96 194.91
1952 333.72 6 5.81 5.82 336.96 -3.24 10.49
1953 409.98 7 6.02 6.00 404.42 5.56 30.94
1954 461.35 8 6.13 6.18 485.38 -24.03 577.61
1955 563.54 9 6.33 6.37 582.56 -19.02 361.71
1956 734.34 10 6.60 6.55 699.19 35.15 1235.63
1957 1,000.40 11 6.91 6.73 839.17 161.23 25995.80
1958 1,171.70 12 7.07 6.91 1007.17 164.53 27069.63
1959 1,309.70 13 7.18 7.10 1208.81 100.89 10178.81
1960 1,436.00 14 7.27 7.28 1450.82 -14.82 219.54
1961 1,694.20 15 7.43 7.46 1741.27 -47.07 2215.99
1962 1,925.20 16 7.56 7.64 2089.88 -164.68 27120.17
1963 2,059.60 17 7.63 7.83 2508.28 -448.68 201315.52
1964 3,239.30 18 8.08 8.01 3010.45 228.85 52373.83
1965 3,572.80 19 8.18 8.19 3613.15 -40.35 1627.81
1966 4,247.70 20 8.35 8.37 4336.51 -88.81 7886.80
1967 5,345.20 21 8.58 8.56 5204.69 140.51 19743.61

Regression ranges
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Figure 5-8 
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5.4  Modified exponential growth (MODEXP) 
 
The modified-exponential growth model is widely used to model market penetration of 
consumer goods and services.  A classic example of this type of growth is the penetration 
of TVs in U.S. households, shown in Figures 5-9 and 5-10.  Penetration is defined as the 
percentage of households that own one or more TVs.  Early percentage growth with this 
model is quite large, so the forecasts grow explosively at first.  However, percentage 
growth declines continuously until the data reach a saturation level, where growth stops.   
 
From 1950 to 1960, TV penetration grew almost ten-fold, from 9% to about 87%.  Later 
growth slowed dramatically as the market approached saturation.  In 1981, penetration 
reached 98.1% and has been virtually constant since then. 
 
Data entry for this model is similar to the earlier models except that you must enter the 
expected saturation level in cell C12.  The equation for the modified-exponential curve is: 
     
Yt = K - abt           (5-3) 
 
K is the saturation level.  As in the earlier models, t refers to time, a is the intercept, and b 
is the slope.  After taking logs and rearranging, the modified exponential can be written as: 
 
ln (K - Yt) = ln (a) + t(ln b)        (5-4) 
 
Fitting this equation by regression and forecasting the Y data works as follows:  The Y 
variable in the regression is the log of (K - Y) in column D.  The X variable is the series of 
integers in column C.  Estimated values of the logs of (K-Y) are computed using the 
regression coefficients in column F.  Column G takes antilogs of column F.  Finally, in 
column H, forecasts are computed by subtracting column G from the saturation level. 
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Figure 5-9 
 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

A B C D E F G H I
MODEXP TV penetration INTERMEDIATE CALCULATIONS:
Modified exponential regression on time RMSE (Square root of MSE) 1.69               
Yt = K - abt           or ln (K - Yt) = ln (a)  + t(ln (b)) 3 X RMSE 5.07                 
Select Tools, Data Analysis, Regression.  Enter ranges as follows:
Y range includes column D,  X range includes column C, Output range = O1. Warm-up SSE 111.20             
Ensure number of data selected for Y and X ranges agree with the Warm-up MSE 2.85                 
nbr. of warm-up data entered in cell C10. Forecasting SSE 111.20             

Fcst SSE - Warm-up SSE -                 
INPUT: Nbr. of forecast periods -                   
Nbr. of warm-up data 39 Forecasting MSE -                 
Last period to forecast 40
Saturation level (K) 98.21 Warm-up Sum abs. err. 41.82               

Warm-up MAD 1.07                 
OUTPUT: Forecasting Sum abs. err. 41.82             
Number of data 39 Fcst Sum abs. - Warm-up Sum ab -                 
Nbr. of outliers 0 Nbr. of forecast periods -                   
Warm-up MSE 2.85                 Forecasting MAD -                   
Forecasting MSE -                   Last forecast at period 40                  
Warm-up MAD 1.07                 
Forecasting MAD -                   

X-range Y range
Mon/yr. Data t LN (K-Y) K-Y Est  LN K-Y Est K-Y Est Y e = Y - Est Y
1950 9.0 1 4.49 89.21 4.48 88.14 10.07 -1.07
1951 23.5 2 4.31 74.71 4.29 73.20 25.01 -1.51
1952 34.2 3 4.16 64.01 4.11 60.78 37.43 -3.23
1953 44.7 4 3.98 53.51 3.92 50.48 47.73 -3.03
1954 55.7 5 3.75 42.51 3.74 41.92 56.29 -0.59
1955 64.5 6 3.52 33.71 3.55 34.81 63.40 1.10
1956 71.8 7 3.27 26.41 3.36 28.91 69.30 2.50
1957 78.6 8 2.98 19.61 3.18 24.00 74.21 4.39
1958 83.2 9 2.71 15.01 2.99 19.93 78.28 4.92
1959 85.9 10 2.51 12.31 2.81 16.55 81.66 4.24
1960 87.1 11 2.41 11.11 2.62 13.75 84.46 2.64
1961 88.8 12 2.24 9.41 2.44 11.42 86.79 2.01
1962 90.0 13 2.11 8.21 2.25 9.48 88.73 1.27
1963 91.3 14 1.93 6.91 2.06 7.87 90.34 0.96
1964 92.3 15 1.78 5.91 1.88 6.54 91.67 0.63
1965 92.6 16 1.72 5.61 1.69 5.43 92.78 -0.18
1966 93.0 17 1.65 5.21 1.51 4.51 93.70 -0.70
1967 93.6 18 1.53 4.61 1.32 3.74 94.47 -0.87
1968 94.6 19 1.28 3.61 1.13 3.11 95.10 -0.50
1969 95.0 20 1.17 3.21 0.95 2.58 95.63 -0.63
1970 95.3 21 1.07 2.91 0.76 2.14 96.07 -0.77
1971 95.5 22 1.00 2.71 0.58 1.78 96.43 -0.93
1972 95.8 23 0.88 2.41 0.39 1.48 96.73 -0.93
1973 96.4 24 0.59 1.81 0.21 1.23 96.98 -0.58
1974 96.9 25 0.27 1.31 0.02 1.02 97.19 -0.29
1975 97.1 26 0.10 1.11 -0.17 0.85 97.36 -0.26

Regression ranges
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Figure 5-10 
 

Modified exponential regression
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It is important to understand that the modified-exponential curve is the best-fitting curve, 
given a prespecified saturation level.  Thus an infinite number of curves exists, one for 
each saturation level.  If you do not have marketing information that suggests a reasonable 
saturation level, experiment with entries in cell C12 until you find the saturation level that 
minimizes the warm-up MSE.  This was done with the TV data and the best saturation 
level found to be 98.21. 
 
Because the saturation level is critical, it is always wise to do simulated forecasting to test 
the validity of the model.  To demonstrate, set the warm-up data to 7 periods (covering the 
years 1950 - 1956) and run the regression again.  The forecasts are not significantly 
different from those produced using all the data.  You may protest the simulation on the 
grounds that in 1956 there was no way to know that 98.21 was the minimum-MSE 
saturation level.  However, the point of this example is that forecasts for the next few time 
periods are often insensitive to the saturation level  as long as it is somewhere in the ball 
park.  It seems obvious from the early growth in TV data that saturation will occur 
somewhere in the high 90s.  Any saturation level in the range 95 to 100 produces 
reasonable forecasts for 1957 - 1960. 
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5.5  Logistic growth (GROWTH) 
 
Perhaps the most widely-used long-range forecasting model is the logistic curve, one of a 
family of S-shaped curves.  In the example in Figures 5-11 and 5-12, the Y data are DVD 
penetration, the percentage of households that own one or more DVDs, in Fort Bend 
County, Texas.  The curve is typical, with slow growth at first, followed by a period of 
steep growth, and finally by a gradual decline in growth to the saturation level. This type 
of forecasting model originated in the study of the spread of epidemics during the early 
part of this century.  Today the logistic is used for the same purpose as well as in 
forecasting the development of markets for both industrial and consumer goods.  
 
Like the modified exponential, the expected saturation level K must be entered before 
running the model.  The equation for the logistic curve is: 
 
Yt  =  K / (1 + a (exp (-bt))        (5-5) 
 
After taking logs and rearranging, the logistic can be written as: 
 
ln ((K/Yt)-1) = ln (a) – bt        (5-6) 
 
The Y variable in the regression is the log of (K/Y)-1, column D in Figure 5-11.  The X is  
column C.  The remainder of the calculations are similar to the exponential. 
 
The same observations about choosing the saturation level for the modified exponential 
also apply to the logistic.  There are an infinite number of logistic curves for each 
saturation level.  Always do some sensitivity analysis before choosing a final model. 
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Figure 5-11 
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LOG DVD penetration in Fort Bend INTERMEDIATE CALCULATIONS:
Logistic regression on time RMSE (Square root of MSE) 0.83               
Y = K / [1 + a exp (-bt)] or ln((K/Y)-1) = ln (a) -bt 3 X RMSE 2.49                 
Select Tools, Data Analysis, Regression.  Enter ranges as follows:
Y range includes column D,  X range includes column C, Output range = O1. Warm-up SSE 4.14                 
Ensure number of data selected for Y and X ranges agree with the Warm-up MSE 0.69                 
nbr. of warm-up data entered in cell C10. Forecasting SSE 4.14                 

Fcst SSE - Warm-up SSE -                 
INPUT: Nbr. of forecast periods -                   
Nbr. of warm-up data 6 Forecasting MSE -                 
Last period to forecast 16
Saturation level (K) 70.00 Warm-up Sum abs. err. 3.64                 

Warm-up MAD 0.61                 
OUTPUT: Forecasting Sum abs. err. 3.64               
Number of data 6 Fcst Sum abs. - Warm-up Sum ab -                 
Nbr. of outliers 0 Nbr. of forecast periods -                   
Warm-up MSE 0.69 Forecasting MAD -                   
Forecasting MSE 0.00 Last forecast at period 16                  
Warm-up MAD 0.61
Forecasting MAD 0.00

X-range Y range
Mon/yr. Data t LN (K/Y)-1 (K/Y)-1 LN (K/Y)-1 Est (K/Y)-1 Est Y e = Y - Est Y
1996 2.1 1 3.48 32.33 3.39 29.74 2.28 -0.18
1997 5.5 2 2.46 11.73 2.55 12.82 5.06 0.44
1998 10.6 3 1.72 5.60 1.71 5.53 10.72 -0.12
1999 20.8 4 0.86 2.37 0.87 2.38 20.68 0.12
2000 36.0 5 -0.06 0.94 0.03 1.03 34.51 1.49
2001 47.2 6 -0.73 0.48 -0.81 0.44 48.49 -1.29
2002 7 #N/A #N/A -1.65 0.19 58.76 #N/A
2003 8 #N/A #N/A -2.50 0.08 64.67 #N/A
2004 9 #N/A #N/A -3.34 0.04 67.60 #N/A
2005 10 #N/A #N/A -4.18 0.02 68.94 #N/A
2006 11 #N/A #N/A -5.02 0.01 69.54 #N/A
2007 12 #N/A #N/A -5.86 0.00 69.80 #N/A
2008 13 #N/A #N/A -6.70 0.00 69.91 #N/A
2009 14 #N/A #N/A -7.54 0.00 69.96 #N/A
2010 15 #N/A #N/A -8.38 0.00 69.98 #N/A
2011 16 #N/A #N/A -9.22 0.00 69.99 #N/A

Regression ranges
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Figure 5-12 
 

Logistic regression

0

10

20

30

40

50

60

70

80

90

100
19

96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

Actual
Forecast

 

 

60 Growth Models 


	Figure 5-8
	Figure 5-9

