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  Two demand forecasting models are available in Sections 2.1 - 2.2.  The 

exponential smoothing models extrapolate historical data patterns.  Simple 
exponential smoothing is a short-range forecasting tool that assumes a 
reasonably stable mean in the data with no trend (consistent growth or decline).  
To deal with a trend, try the trend-adjusted smoothing model.  TRENDSMOOTH 
lets you compare several different types of trend before committing to a forecast.  

 
  The exponential smoothing worksheets accept either nonseasonal data or data 

which has been seasonally-adjusted using of the models in Sections 2.4 and 2.5.  
If your data contain a seasonal pattern, perform a seasonal adjustment before you 
apply exponential smoothing.  Seasonal adjustment removes the seasonal pattern 
so that you can concentrate on forecasting the mean or trend 
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2.1  Simple exponential smoothing (SIMPLE) 
 
More than 25% of U.S. corporations use some form of exponential smoothing as a forecasting 
model.  Smoothing models are relatively simple, easy to understand, and easy to implement, 
especially in spreadsheet form.  Smoothing models also compare quite favorably in accuracy to 
complex forecasting models.  One of the surprising things scientists have learned about 
forecasting in recent years is that complex models are not necessarily more accurate than simple 
models. 
 
The simplest form of exponential smoothing is called, appropriately enough, simple smoothing.  
Simple smoothing is used for short-range forecasting, usually just one month into the future.  
The model assumes that the data fluctuate around a reasonably stable mean (no trend or 
consistent pattern of growth).  If the data contain a trend, use the trend-adjusted smoothing 
model (TRENDSMOOTH). 
 
Figures 2-1 illustrates an application of simple exponential smoothing at the International Airport 
in Victoria, Texas.  The airport has been open for a year and the data are the monthly numbers of 
passengers embarked.  The terminal manager feels that he has enough data to develop a forecast 
of passengers one month in advance in order to schedule part-time employment for airport 
parking, baggage handling, and security. 
 
To get the forecasting process started, SIMPLE automatically sets the first forecast (F26) equal 
to the average of the number of warm-up data specified in cell D9.  The number of warm-up data 
is 6, so the first forecast of 30.0 is the average of the data for months 1-6.  If you don't like the 
first forecast, replace the formula in F26 with a value.  Thereafter the forecasts are updated as 
follows:  In column G, each forecast error is equal to actual data minus the forecast for that 
period.  In column F, each forecast is equal to the previous forecast plus a fraction of the 
previous error.  This fraction is found in cell D8 and is called the smoothing weight.  The model 
works much like an automatic pilot, a cruise control on an automobile, or a thermostat.  If a 
given forecast is too low, the forecast error is positive, and the next forecast is increased by a 
fraction of the error.  If a given forecast is too high, the forecast error is negative, and the next 
forecast is reduced by a fraction of the error.  If we get lucky and a forecast is perfect, the error is 
zero and there is no change in the next forecast. 
 
A total of 12 data observations are entered in Figure 2-1.  The model automatically makes 
forecasts through the last period specified in cell D10.  For months 13-24, the forecasts are 
constant as shown in Figure 2-2.  Remember that the model assumes no trend, so the only option 
is to project the last forecast for every period in the future. 
 
The model computes two mean forecast error measures.  The MSE is the mean-squared-error and 
the MAD is the mean of the absolute errors or the mean-absolute-deviation.  Both are commonly 
used in practice.  The MSE gives more weight to large errors, while the MAD is easier to 
interpret. 
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A B C D E F G H I J K L
SIMPLE.XLS INTERMEDIATE CALCULATIONS: DATA TABLE:
Simple exponential smoothing. RMSE (Square root of MSE) 2.14 Select K6..L16.
Enter actual or seasonally-adjusted data in column D. 3 X RMSE 6.41 Select Data Table.
Enter additive seasonal indices in column E. Enter column input ce
If seasonal indices are multiplicative, edit column H. Warm-up SSE 27.40 Weight MSE

Warm-up MSE 4.57 2.62
INPUT: Forecasting SSE 43.13 0.10 2.13
Smoothing weight 0.30 Fcst SSE - Warm-up SSE 15.73 0.20 2.45
Nbr. Of warm-up data 6 Nbr. of forecast periods 6 0.30 2.62
Last period to forecast 24 Forecasting MSE 2.62 0.40 2.69

0.50 2.75
OUTPUT: Warm-up Sum abs. err. 22.07 0.60 2.85
Number of data 12 Warm-up MAD 3.68 0.70 3.00
Nbr. of outliers 0 Forecasting Sum abs. err. 40.76 0.80 3.20
Warm-up MSE 4.57 Fcst Sum abs. - Warm-up Sum 18.69 0.90 3.49
Forecasting MSE 2.62 Nbr. of forecast periods 6 1.00 4.00
Warm-up MAD 3.68 Forecasting MAD 3.11 Note:  MSE values are
Forecasting MAD 3.11 Last forecast at period 24 on forecasting periods

Avg.
Period data

Month Month Period Actual Seas Index + Outlier Sum
& year nbr. nbr. data Index Fcst Error Fcst Indicator nbr out

Jan-00 1 1 28 30.00 -2.00 #N/A 0 0 1 28.00
Feb-00 2 2 27 29.40 -2.40 #N/A 0 0 2 27.50
Mar-00 3 3 33 28.68 4.32 #N/A 0 0 3 29.33
Apr-00 4 4 25 29.98 -4.98 #N/A 0 0 4 28.25
May-00 5 5 34 28.48 5.52 #N/A 0 0 5 29.40
Jun-00 6 6 33 30.14 2.86 #N/A 0 0 6 30.00
Jul-00 7 7 35 31.00 4.00 #N/A 0 0 7 30.71
Aug-00 8 8 30 32.20 -2.20 #N/A 0 0 8 30.63
Sep-00 9 9 33 31.54 1.46 #N/A 0 0 9 30.89
Oct-00 10 10 35 31.98 3.02 #N/A 0 0 10 31.30
Nov-00 11 11 27 32.88 -5.88 #N/A 0 0 11 30.91
Dec-00 12 12 29 31.12 -2.12 #N/A 0 0 12 30.75
Jan-01 13 #N/A 30.48 0 #N/A 0 0 13 #N/A
Feb-01 14 #N/A 30.48 0 #N/A 0 0 14 #N/A
Mar-01 15 #N/A 30.48 0 #N/A 0 0 15 #N/A
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 Figure 2-2 
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Both MSE and MAD are computed for two samples of the data.  The first sample (periods 1-6) is 
called the warm-up sample.  This sample is used to "fit" the forecasting model, that is to get the 
model started by computing the first forecast and running for a while to get "warmed up."   The 
second part of the data (periods 7-12) is used to test the model and is called the forecasting 
sample.  Accuracy in the warm-up sample is really irrelevant.  Accuracy in the forecasting 
sample is more important because the pattern of the data often changes over time.  The 
forecasting sample is used to evaluate how well the model tracks such changes.  There are no 
statistical rules on where to divide the data into warm-up and forecasting samples.  There may 
not be enough data to have two samples.  A good rule of thumb is to put at least six nonseasonal 
data points or two complete seasons of seasonal data in the warm-up.  If there is less data than 
this, there is no need to bother with two samples.  In a long time series, it is common in practice 
to simply divide the data in half.  If you don't want to bother with a warm-up sample, set the 
number of warm-up data equal to the total number of data.  The forecasting MSE and MAD will 
then be set to zero. 
 
How do you choose the weight in cell D8?  A range of trial values must be tested.  The 
best-fitting weight is the one that gives the best MSE or MAD in the warm-up sample.  There are 
two factors that interact to determine the best-fitting weight.  One is the amount of noise or 
randomness in the series.  The greater the noise, the smaller the weight must be to avoid 
overreaction to purely random fluctuations in the time series.  The second factor is the stability 
of the mean.  If the mean is relatively constant, the weight must be small.  If the mean is 
changing, the weight must be large to keep up with the changes.  Weights can be selected from 
the range 0 - 1 although we recommend a minimum weight of 0.1 in practice.  Smaller values 
result in a very sluggish response to changes in the mean of the time series. 
 
An Excel data table is available in columns K and L to assist in selecting smoothing weights.  
Column K displays smoothing weights from 0.10 to 1.00 in increments of 0.10 while column L 
displays the corresponding forecast MSE.  Follow the instructions at the top of the data table to 
update MSE values.  The weights in column K can be changed.  You can also edit the formula in 
L6 to compute MAD rather than MSE results. 
 
Two other graphs in the SIMPLE workbook assist in evaluation of the forecast model.  The error 
graph compares individual forecast errors to control limits.  These limits are established at plus 
and minus three standard deviations from zero.  The standard deviation is estimated by the 
square root of the MSE, called the RMSE for root-mean-squared-error.  The probability is less 
than 1% that individual errors will exceed the control limits if the mean of the data is unchanged.   
The “outlier” count in cell D14 of Figure 2-1 is the number of errors that went outside control 
limits.  Finally, the MSE graph is a bar chart of MSE values for alternative smoothing weights. 
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The forecasting model in SIMPLE is based on two equations that are updated at the end of each 
time period: 
 
 Forecast error = actual data  -  current forecast 
 Next forecast = current forecast  +  (weight x error) 
 
A little algebra shows that this model is equivalent to another model found in many textbooks 
and in practice: 
 
 Next forecast = (weight x actual data) + [(1 - weight) x current forecast] 
 
The model in SIMPLE is easier to understand and requires less arithmetic.  It is true that the 
model requires computation of the error before the forecast can be computed.  However, the 
error must always be computed to evaluate the accuracy of the model.   
 
To forecast other data in SIMPLE, enter month and year in column A and data in column D.  The 
data can be nonseasonal or seasonal.  If seasonal, enter seasonally-adjusted data in column D and 
seasonal indices in column E.  All forecasts in column F are seasonally-adjusted.  The worksheet 
assumes any seasonal indices are additive in nature, so seasonal indices are added to seasonally-
adjusted forecasts in column F to obtain final forecasts in column H.   If your seasonal indices 
are multiplicative rather than additive, edit the formulas in column H to multiply by the index 
rather than add it.  Seasonal calculations are handled in the same way in the TRENDSMOOTH 
model.  Seasonal adjustment procedures are explained in detail in sections 2.3 – 2.5.     
 
 
2.2  Smoothing linear, exponential, and damped trends (TRENDSMOOTH) 
 
Exponential smoothing with a trend works much like simple smoothing except that two 
components must be updated each period:  level and trend.  The level is a smoothed estimate of 
the value of the data at the end of each period.  The trend is a smoothed estimate of average 
growth at the end of each period. 
 
To explain this type of forecasting, let's review an application at Alief Precision Arms, a 
company that manufactures high-quality replicas of the Colt Single-Action Army revolver and 
other revolvers from the nineteenth century.  Alief was founded in 1987 and, as shown in Figure 
2-3, experienced rapid growth through about 1994.  Since 1994, growth has slowed and Alief is 
uncertain about the growth that should be projected in the future.  



 
Figure 2-3 
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The worksheet in Figure 2-4 was developed to help Alief compare several different types of 
trend forecasts.  This worksheet can produce a linear or straight-line trend, a damped trend in 
which the amount of growth declines each period in the future, or an exponential trend in which 
the amount of growth increases each period in the future. 
 
To get started, initial values for level and trend are computed in cells H22 and I22.  The model 
sets the initial trend equal to the average of the first four differences among the data.  These 
differences are (23.1 - 20.8), (27.2 - 23.1), (32.3 - 27.2), and (34.4 - 32.3).  The average 
difference or initial trend is 3.4.  This value is our estimate of the average growth per period at 
the beginning of the data.  The initial level is the first data observation minus the initial trend or 
20.8 – 3.4 = 17.4. 
 
The forecasting system works as follows: 
 Forecast error  = Actual data - current forecast 
 Current level = Current forecast + (level weight x error) 
 Current trend = (Trend modifier x previous trend) +  (trend weight x error) 
 Next forecast = Current level + (trend modifier x current trend)  
 
Level and trend are independent components of the forecasting model and require separate 
smoothing weights.  Experience shows that the level weight is usually much larger than the trend 
weight.  Typical level weights range anywhere from 0.10 to 0.90, while trend weights are usually 
small, in the range of 0.05 to 0.20.  The trend modifier is usually in the range 0.70 to 1.00.  If the 
trend modifier is less than 1.00, the effect is to reduce the amount of growth extrapolated into the 
future.  If the modifier equals 1.00, we have a linear trend with a constant amount of growth each 
period in the future.  If the modifier exceeds 1.00, growth accelerates, a dangerous assumption in 
practical business forecasting. 
 
Let’s work through the computations at the end of 1987.  The forecast error in 1987 is data 
minus forecast or 20.80 – 20.29 = 0.51.  The current level is the forecast for 1998 plus the level 
weight times the error, or 20.29 + 0.5 x 0.51 = 20.55.  The current trend is the trend modifier 
times the previous trend plus the trend weight times the error, or 0.85 x 3.40 + 0.10 x 0.51 = 
2.94.  The forecast for 1988 is the current level plus the trend modifier times the current trend or 
20.55 + 0.85 x 2.94 = 23.04. 
 
Now look at the forecasts for more than one period ahead.  Let n be the number of periods ahead.   
To forecast more than one period into the future, the formula is: 
 
Forecast for n > 1 = (previous forecast) + [(trend modifier)^n] x (final computed trend estimate) 
 
Let's forecast the years 2000 - 2003, or 2 - 4 years into the future.  The previous forecast needed 
to get started is the 1999 forecast of 45.24.  The final computed trend estimate was 0.84 at the 
end of 1998.  The forecasts are: 
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TRENDSMOOTH1 INTERMEDIATE CALCULATIONS:
Exponential smoothing with damped trend RMSE (Square root of MSE) 2.28
Enter actual or seasonally-adjusted data in column D. 3 X RMSE 6.85
Enter additive seasonal indices in column E. Avg. of first 4 differences 3.4
If seasonal indices are multiplicative, edit column J, which reverses seasonal adjustment. Warm-up SSE 31.29
Tab right for data table for smoothing parameters. Warm-up MSE 5.214418

Forecasting SSE 33.79
Fcst SSE - Warm-up SSE 2.51
Nbr. of forecast periods 6

INPUT: OUTPUT: Forecasting MSE 0.42
Level weight 0.50 Number of data 12 Warm-up Sum abs. err. 11.16
Trend weight 0.10 Number of outliers 0 Warm-up MAD 1.860502
Trend modifier 0.85 Warm-up MSE 5.21 Forecasting Sum abs. err. 14.01
Number of warm-up data 6 Forecasting MSE 0.42 Fcst Sum abs. - Warm-up Sum ab 2.85
Last period to forecast 24 Warm-up MAD 1.86 Nbr. of forecast periods 6

Forecasting MAD 0.47 Forecasting MAD 0.47
Last forecast at period 24

Month Month Period Seas Index + Outlier Sum 
& year nbr. nbr. Data Index Fcst Error Level Trend Fcst Indicator nbr out Period

17.40 3.40
1987 1 1 20.8 20.29 0.51 20.55 2.94 #N/A 0 0 1
1988 2 2 23.1 23.04 0.06 23.07 2.51 #N/A 0 0 2
1989 3 3 27.2 25.20 2.00 26.20 2.33 #N/A 0 0 3
1990 4 4 32.3 28.18 4.12 30.24 2.39 #N/A 0 0 4
1991 5 5 34.4 32.27 2.13 33.34 2.25 #N/A 0 0 5
1992 6 6 37.6 35.25 2.35 36.42 2.14 #N/A 0 0 6
1993 7 7 38.0 38.25 -0.25 38.12 1.80 #N/A 0 0 7
1994 8 8 41.0 39.65 1.35 40.33 1.66 #N/A 0 0 8
1995 9 9 41.6 41.74 -0.14 41.67 1.40 #N/A 0 0 9
1996 10 10 42.2 42.86 -0.66 42.53 1.12 #N/A 0 0 10
1997 11 11 43.9 43.49 0.41 43.69 1.00 #N/A 0 0 11
1998 12 12 44.5 44.54 -0.04 44.52 0.84 #N/A 0 0 12
1999 13 #N/A 45.24 #N/A 44.52 0.84 #N/A #N/A #N/A 13
2000 14 #N/A 45.85 #N/A 44.52 0.84 #N/A #N/A #N/A 14
2001 15 #N/A 46.36 #N/A 44.52 0.84 #N/A #N/A #N/A 15
2002 16 #N/A 46.80 #N/A 44.52 0.84 #N/A #N/A #N/A 16
2003 17 #N/A 47.18 #N/A 44.52 0.84 #N/A #N/A #N/A 17
2004 18 #N/A 47.50 #N/A 44.52 0.84 #N/A #N/A #N/A 18
2005 19 #N/A 47.77 #N/A 44.52 0.84 #N/A #N/A #N/A 19
2006 20 #N/A 48.00 #N/A 44.52 0.84 #N/A #N/A #N/A 20
2007 21 #N/A 48.19 #N/A 44.52 0.84 #N/A #N/A #N/A 21
2008 22 #N/A 48.36 #N/A 44.52 0.84 #N/A #N/A #N/A 22
2009 23 #N/A 48.50 #N/A 44.52 0.84 #N/A #N/A #N/A 23
2010 24 #N/A 48.62 #N/A 44.52 0.84 #N/A #N/A #N/A 24
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 Forecast for 2 years ahead (2000) = 45.24 + .85^2 x 0.84 = 45.85 
 Forecast for 3 years ahead (2001) = 45.85 + .85^3 x 0.84 = 46.36 
 Forecast for 4 years ahead (2002) = 46.36 + .85^4 x 0.84 = 46.80 
 Forecast for 5 years ahead (2003) = 46.80 + .85^5 x 0.84 = 47.18 
 
The trend modifier is a fractional number.  Raising a fractional number to a power produces 
smaller numbers as we move farther into the future.  The result is called a damped trend because 
the amount of trend added to each new forecast declines.  The damped trend was selected by 
Alief management because it reflects slowing growth, probably the best that can be expected 
given political and economic conditions in the firearms market at the end of 1998.  The damped 
trend approach to the Alief data gives an excellent forecasting MSE of 0.42, much better than the 
linear alternative.  To see the linear trend, change the trend modifier in cell E13 to 1.00.   The 
graph shows growth that runs well above the last few data observations, with a forecasting MSE 
of 8.09.  Optimists can also generate an exponential trend.  Set the trend modifier to a value 
greater than 1.0 and the amount of trend increases each period.  This type of projection is risky in 
the long-term but is often used in growth markets for short-term forecasting. 
 
To reiterate, by changing the trend modifier, you can produce different kinds of trend.  A 
modifier equal to 1.0 yields a linear trend, where the amount of growth in the forecasts is 
constant beyond the end of the data.  A modifier greater than 1.0 yields an exponential trend, one 
in which the amount of growth gets larger each time period.  A modifier between 0 and 1 is 
widely used because it produces a damped trend. 
 
TRENDSMOOTH requires that you choose the best combination of three parameters:  level 
weight, trend weight, and trend modifier.  There are various ways to do this in Excel.  The 
simplest approach is to set the trend modifier equal to 1.0. and use the data table starting at the 
top of column Q to find the best combination of level and trend parameters, the combination that 
minimizes the MSE or MAD.  Search over the range 0.10 to 0.90 for the level weight in 
increments of 0.10.  Search over the range 0.05 to 0.20 for the trend weight in increments of 
0.05.  Then fix the level and trend parameters and try alternative values of the trend modifier in 
the range 0.70 to 1.00 in increments of 0.05.  Once you find the best trend modifier, run the data 
table again, then do another search for the trend modifier.  Keep going until the forecasting MSE 
stabilizes.  Great precision is not necessary.  TRENDSMOOTH is a robust model, relatively 
insensitive to smoothing parameters provided that they are approximately correct. 
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2.3  Seasonal adjustment  
 
Regular seasonal patterns appear in most business data.  The weather affects the sales of 
everything from bikinis to snowmobiles.  Around holiday periods, we see increases in the 
number of retail sales, long-distance telephone calls, and gasoline consumption.  Business policy 
can cause seasonal patterns in sales.  Many companies run annual dealer promotions which cause 
peaks in sales.  Other companies depress sales temporarily by shutting down plants for annual 
vacation periods. 
 
Usually seasonality is obvious but there are times when it is not.  Two questions should be asked 
when there is doubt about seasonality.  First, are the peaks and troughs consistent?  That is, do 
the high and low points of the pattern occur in about the same periods (week, month, or quarter) 
each year?  Second, is there an explanation for the seasonal pattern?  The most common reasons 
for seasonality are weather and holidays, although company policy such as annual sales 
promotions may be a factor.  If the answer to either of these questions is no, seasonality should 
not be used in the forecasts.    
 
Our approach to forecasting seasonal data is based on the classical decomposition method 
developed by economists in the nineteenth century.  Decomposition means separation of the time 
series into its component parts.  A complete decomposition separates the time series into four 
components: seasonality, trend, cycle, and randomness.  The cycle is a long-range pattern related 
to the growth and decline of industries or the economy as a whole. 
 
Decomposition in business forecasting is usually not so elaborate.  We will start by simply 
removing the seasonal pattern from the data.  The result is called deseasonalized or seasonally-
adjusted data.  Next the deseasonalized data is forecasted with one of the models discussed 
earlier in this chapter.  Finally, the forecasts are seasonalized (the seasonal pattern is put back). 
 
There are two kinds of seasonal patterns:  multiplicative and additive.   In multiplicative patterns, 
seasonality is proportional to the level of the data.  As the data grow, the amount of seasonal 
fluctuation increases.  In additive patterns, seasonality is independent of the level of the data.  As 
the data grow, the amount of seasonal fluctuation is relatively constant. 
 
Both types of seasonality are found in business data.  Multiplicative seasonality is often the best 
choice for highly aggregated data, such as company or product-line sales series.  In inventory 
control, demand data are often noisy and contain outliers.  Thus the additive model is widely 
used because it is less sensitive to outliers. 
 
In multiplicative seasonality, the seasonal index is defined as the ratio of the actual value of the 
time series to the average for the year.  There is a unique index for each period of the year.  If the 
data are monthly, there are twelve seasonal indices.  If the data are quarterly, there are four 
indices. The index adjusts each data point up or down from the average for the year.  The index 
is used as follows: 
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 Actual data  /  Multiplicative Index    =  Deseasonalized data 
 
Suppose the multiplicative seasonal index for January sales is 0.80.  This means that sales in 
January are expected to be 80% of average sales for the year.  Now suppose that actual sales for 
January are $5000.  Deseasonalized sales are: 
 
 $5000  / .80      =  $6250. 
 
To put the seasonality back, or to seasonalize the sales, we use: 
 
 Deseasonalized data x Multiplicative Index  =  Actual data 
 
 $6250  x  .80      =  $5,000. 
 
In additive seasonality, the seasonal index is defined as the expected amount of seasonal 
fluctuation.  The additive index is used as follows: 
 
 Actual data – Additive Index = Deseasonalized data 
 
Suppose that the additive seasonal index for January sales is -$1,250.  This means that sales in 
January are expected to be $1,250 less than average sales for the year.   Now suppose that actual 
sales for January are $5,000.  Deseasonalized sales are: 
 
 $5000  - (-$1,250)      =  $6,250. 
 
To put the seasonality back, or to seasonalize the sales, we use: 
 
 Deseasonalized data + Additive Index  =  Actual data 
 
 $6,250 + (-$1,250)      =  $5000. 
 
Two worksheets are available for seasonal adjustment.  MULTIMON uses the ratio-to-moving 
average method to adjust monthly data.   ADDITMON uses a similar method called  the 
difference-to-moving average method to adjust monthly data.  It may be necessary to test both of 
these worksheets before choosing a seasonal pattern. 
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2.4  Ratio-to-moving-average seasonal adjustment for monthly data 
(MULTIMON) 
 
Hill Country Vineyards uses the MULTIMON worksheet in Figure 2-5 to adjust sales of its 
product line.  Champagne sales, as you might expect, peak around the holiday season at the end 
of the year and fall off in the summer.  To get adjusted data in the model, the first step in column 
E is to compute a 12-month moving average of the data.  The first moving average, covering 
January through December, is always placed next to month 7.  The second moving average, for 
February through January, is placed opposite month 8, and so on.  This procedure means that 
there will not be a moving average for the first 6 or the last 5 months of the data. 
 
The second step is to use the moving averages to compute seasonal indices.  If you divide each 
data point by its moving average, the result is a preliminary seasonal index.  Ratios are computed 
in column F:  Each ratio is simply the actual sales in column D divided by the moving average in 
column E.  The ratios for the same month in each year vary somewhat, so they are summed in 
column G and averaged in column I.  The average ratios can be interpreted as follows.  Sales in 
January are predicted to be 73% of average monthly sales for the year.  Sales in December are 
predicted to be 209% of average.  For this interpretation to make sense, the average ratios must 
sum to 12 since there are 12 months in the year.  The average ratios actually sum to 12.124 
because rounding is unavoidable.  Therefore, formulas in column J "normalize" the ratios to sum 
to 12. 
 
Column K simply repeats the ratios.  The same set of 12 ratios is used each year to perform 
seasonal adjustment in column L.  Each actual data point in column D is divided by the seasonal 
index applicable to that month to obtain the adjusted data in column L. 
 
How do we know that the seasonal adjustment procedure was successful?  Cells I6..J6 compute 
the variances of the original and seasonally-adjusted data, with coefficients of variation (standard 
deviation / average) in I7..J7.  Seasonal adjustment produced a significant reduction in variance, 
which makes the seasonally-adjusted data much easier to forecast than the original data.  The 
effects of seasonal adjustment are apparent in the graph in Figure 2-6.  The seasonally-adjusted 
line is much smoother than the original data. 
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A B C D E F G H I J K L
MULTIMON.XLS 1st moving average at mon # 7
MULTIPLICATIVE SEASONAL ADJUSTMENT Last moving average at mon # 31
Enter month and year in column A and data in column D. Total number of data 36

Actual Adj.
Hill Country Champagne sales Variances 418.2 52.5

Coeff. of variation 54.2% 19.6%

Month Month Period Actual Moving Sum of # of Avg. Seas. Adj.
& year nbr. nbr. data avg. Ratio ratios ratios ratio index data
Jan-62 1 1 15.0 0.0 0.00 1.47 2 0.736 0.728 0.728 20.60
Feb-62 2 2 18.7 0.0 0.00 1.44 2 0.718 0.711 0.711 26.32
Mar-62 3 3 23.6 0.0 0.00 1.83 2 0.916 0.907 0.907 26.02
Apr-62 4 4 23.2 0.0 0.00 1.75 2 0.877 0.868 0.868 26.74
May-62 5 5 25.5 0.0 0.00 1.97 2 0.984 0.974 0.974 26.18
Jun-62 6 6 26.4 0.0 0.00 1.78 2 0.892 0.883 0.883 29.90
Jul-62 7 7 18.8 29.4 0.64 2.14 3 0.715 0.708 0.708 26.57
Aug-62 8 8 16.0 30.1 0.53 0.98 2 0.488 0.483 0.483 33.13
Sep-62 9 9 25.2 30.7 0.82 1.72 2 0.861 0.852 0.852 29.57
Oct-62 10 10 39.0 31.2 1.25 2.34 2 1.172 1.160 1.160 33.62
Nov-62 11 11 53.6 32.0 1.68 3.34 2 1.671 1.653 1.653 32.42
Dec-62 12 12 67.3 33.0 2.04 4.19 2 2.095 2.073 2.073 32.46
Jan-63 1 13 24.4 33.5 0.73 Sum 12.124 12.000 0.728 33.50
Feb-63 2 14 24.8 34.5 0.72 0.711 34.90
Mar-63 3 15 30.3 34.6 0.88 0.907 33.40
Apr-63 4 16 32.7 35.5 0.92 0.868 37.69
May-63 5 17 37.8 36.0 1.05 0.974 38.80
Jun-63 6 18 32.3 37.2 0.87 0.883 36.59
Jul-63 7 19 30.3 39.0 0.78 0.708 42.82
Aug-63 8 20 17.6 39.6 0.45 0.483 36.45
Sep-63 9 21 36.0 40.0 0.90 0.852 42.24
Oct-63 10 22 44.7 40.8 1.09 1.160 38.53
Nov-63 11 23 68.4 41.1 1.67 1.653 41.37
Dec-63 12 24 88.6 41.2 2.15 2.073 42.74
Jan-64 1 25 31.1 41.8 0.74 0.728 42.70
Feb-64 2 26 30.1 42.0 0.72 0.711 42.36
Mar-64 3 27 40.5 42.3 0.96 0.907 44.65
Apr-64 4 28 35.2 42.3 0.83 0.868 40.57
May-64 5 29 39.4 42.9 0.92 0.974 40.44
Jun-64 6 30 39.9 43.6 0.92 0.883 45.20
Jul-64 7 31 32.6 44.8 0.73 0.708 46.07
Aug-64 8 32 21.1 0.0 0.00 0.483 43.69
Sep-64 9 33 36.0 0.0 0.00 0.852 42.24
Oct-64 10 34 52.1 0.0 0.00 1.160 44.91
Nov-64 11 35 76.1 0.0 0.00 1.653 46.02
Dec-64 12 36 103.7 0.0 0.00 2.073 50.02
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Figure 2-6 
 

Multiplicative seasonal adjustment

0

20

40

60

80

100

120
Ja

n-
62

M
ar

-6
2

M
ay

-6
2

Ju
l-6

2

Se
p-

62

N
ov

-6
2

Ja
n-

63

M
ar

-6
3

M
ay

-6
3

Ju
l-6

3

Se
p-

63

N
ov

-6
3

Ja
n-

64

M
ar

-6
4

M
ay

-6
4

Ju
l-6

4

Se
p-

64

N
ov

-6
4

Actual Adjusted

 
 
 
 
 
 

Forecasting 
 

17 



Forecasting 
 
18  

2.5  Difference-to-moving-average seasonal adjustment for monthly data 
(ADDITMON) 
 
Additive seasonal adjustment for the Hill Country data is shown in Figure 2-7.  The procedure is 
similar to the multiplicative case except that column F contains differences between actual and 
moving average instead of ratios.  The average difference is computed in column I.  They should 
sum to zero but do not because of rounding.  To normalize in column J, the average difference / 
12 is subtracted from each index.  Indices by month are repeated in column K.  The adjusted data 
are then actual data minus the appropriate index. 
 
Additive adjustment does not work quite as well for the Hill County data as did multiplicative.  
The additive variance for adjusted data is somewhat larger than the multiplicative variance.  The 
reason is that the seasonal pattern appears to be proportional to the level of the data, increasing as 
the data grow. 
 
In business data, the type of seasonal adjustment that should be used is often unclear.  We 
recommend that you test both procedures and use the one that produces the smallest variances. 
 
To use seasonally-adjusted data for forecasting, copy the adjusted data in column L to SIMPLE 
or TRENDSMOOTH.   Paste the data in column D of the forecasting worksheet using the 
following selections:  Edit Paste Special Values so that values only and not formulas are 
transferred.  Next, use the same commands to copy the seasonal indices in column K of the 
seasonal adjustment worksheet to column E of the forecasting worksheet. 
 
The original forecasting worksheets are set up for additive seasonality (column H of SIMPLE 
and column J of TRENDSMOOTH).   If seasonal indices were produced in ADDITMON, no 
editing is necessary and these columns will contain the final forecasts after seasonalizing, that is 
putting the seasonal pattern back.  If seasonal indices are multiplicative from MULTIMON, you 
must edit the formulas in column H or J of the forecasting worksheet so that the deseasonalized 
data are multiplied by the indices. 
 
Figure 2-8 shows TRENDSMOOTH after the multiplicative-adjusted data have been transferred 
and forecasted.  The forecast column contains seasonally-adjusted forecasts, while the Index * 
forecast column contains the final forecasts. 
 
 



Figure 2-7 
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A B C D E F G H I J K L
ADDITMON.XLS 1st moving average at mon # 7
ADDITIVE SEASONAL ADJUSTMENT Last moving average at mon # 31
Enter month and year in column A and data in column D. Total number of data 36

Actual Adj.
Hill Country Champagne sales Variances 418.2 63.9

Coeff. of variation 54.2% 21.2%

Month Month Period Actual Moving Sum of # of Avg. Seas. Seas. Adj.
& year nbr. nbr. data avg. Diff. Diffs. Diffs. Diff. index index data
Jan-62 1 1 15.0 0.0 0.00 -19.83 2 -9.917 -10.253 -10.253 25.25
Feb-62 2 2 18.7 0.0 0.00 -21.58 2 -10.792 -11.128 -11.128 29.83
Mar-62 3 3 23.6 0.0 0.00 -6.11 2 -3.054 -3.391 -3.391 26.99
Apr-62 4 4 23.2 0.0 0.00 -9.91 2 -4.954 -5.291 -5.291 28.49
May-62 5 5 25.5 0.0 0.00 -1.70 2 -0.850 -1.186 -1.186 26.69
Jun-62 6 6 26.4 0.0 0.00 -8.58 2 -4.288 -4.624 -4.624 31.02
Jul-62 7 7 18.8 29.4 -10.56 -31.47 3 -10.489 -10.825 -10.825 29.63
Aug-62 8 8 16.0 30.1 -14.14 -36.09 2 -18.046 -18.382 -18.382 34.38
Sep-62 9 9 25.2 30.7 -5.45 -9.44 2 -4.721 -5.057 -5.057 30.26
Oct-62 10 10 39.0 31.2 7.79 11.65 2 5.825 5.489 5.489 33.51
Nov-62 11 11 53.6 32.0 21.60 48.95 2 24.475 24.139 24.139 29.46
Dec-62 12 12 67.3 33.0 34.28 81.69 2 40.846 40.509 40.509 26.79
Jan-63 1 13 24.4 33.5 -9.12 Sum 4.036 0.000 -10.253 34.65
Feb-63 2 14 24.8 34.5 -9.68 -11.128 35.93
Mar-63 3 15 30.3 34.6 -4.31 -3.391 33.69
Apr-63 4 16 32.7 35.5 -2.81 -5.291 37.99
May-63 5 17 37.8 36.0 1.82 -1.186 38.99
Jun-63 6 18 32.3 37.2 -4.92 -4.624 36.92
Jul-63 7 19 30.3 39.0 -8.69 -10.825 41.13
Aug-63 8 20 17.6 39.6 -21.95 -18.382 35.98
Sep-63 9 21 36.0 40.0 -3.99 -5.057 41.06
Oct-63 10 22 44.7 40.8 3.86 5.489 39.21
Nov-63 11 23 68.4 41.1 27.35 24.139 44.26
Dec-63 12 24 88.6 41.2 47.42 40.509 48.09
Jan-64 1 25 31.1 41.8 -10.72 -10.253 41.35
Feb-64 2 26 30.1 42.0 -11.91 -11.128 41.23
Mar-64 3 27 40.5 42.3 -1.80 -3.391 43.89
Apr-64 4 28 35.2 42.3 -7.10 -5.291 40.49
May-64 5 29 39.4 42.9 -3.52 -1.186 40.59
Jun-64 6 30 39.9 43.6 -3.66 -4.624 44.52
Jul-64 7 31 32.6 44.8 -12.22 -10.825 43.43
Aug-64 8 32 21.1 0.0 0.00 -18.382 39.48
Sep-64 9 33 36.0 0.0 0.00 -5.057 41.06
Oct-64 10 34 52.1 0.0 0.00 5.489 46.61
Nov-64 11 35 76.1 0.0 0.00 24.139 51.96
Dec-64 12 36 103.7 0.0 0.00 40.509 63.19
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Figure 2-8 
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A B C D E F G H I J K L M N
TRENDSMOOTH1 INTERMEDIATE CALCULATIONS:
Exponential smoothing with damped trend RMSE (Square root of MSE) 2.75
Enter actual or seasonally-adjusted data in column D. 3 X RMSE 8.25
Enter additive seasonal indices in column E. Avg. of first 4 differences 1.395097
If seasonal indices are multiplicative, edit column J, which reverses seasonal adjustment. Warm-up SSE 136.14
Tab right for data table for smoothing parameters. Warm-up MSE 7.563435

Forecasting SSE 237.48
Fcst SSE - Warm-up SSE 101.34
Nbr. of forecast periods 18

INPUT: OUTPUT: Forecasting MSE 5.63
Level weight 0.10 Number of data 36 Warm-up Sum abs. err. 40.62
Trend weight 0.05 Number of outliers 0 Warm-up MAD 2.256442
Trend modifier 1.00 Warm-up MSE 7.56 Forecasting Sum abs. err. 76.67
Number of warm-up data 18 Forecasting MSE 5.63 Fcst Sum abs. - Warm-up Sum ab 36.05
Last period to forecast 48 Warm-up MAD 2.26 Nbr. of forecast periods 18

Forecasting MAD 2.00 Forecasting MAD 2.00
Last forecast at period 48

Month Month Period Seas Index * Outlier Sum 
& year nbr. nbr. Data Index Fcst Error Level Trend Fcst Indicator nbr out Period

19.20 1.40
1987 1 1 20.6 0.728 20.60 0.00 20.60 1.40 15.0 0 0 1
1988 2 2 26.3 0.711 21.99 4.33 22.42 1.61 15.6 0 0 2
1989 3 3 26.0 0.907 24.03 1.98 24.23 1.71 21.8 0 0 3
1990 4 4 26.7 0.868 25.94 0.80 26.02 1.75 22.5 0 0 4
1991 5 5 26.2 0.974 27.77 -1.60 27.61 1.67 27.1 0 0 5
1992 6 6 29.9 0.883 29.28 0.62 29.35 1.70 25.9 0 0 6
1993 7 7 26.6 0.708 31.05 -4.48 30.60 1.48 22.0 0 0 7
1994 8 8 33.1 0.483 32.08 1.05 32.18 1.53 15.5 0 0 8
1995 9 9 29.6 0.852 33.71 -4.15 33.30 1.32 28.7 0 0 9
1996 10 10 33.6 1.160 34.62 -1.00 34.52 1.27 40.2 0 0 10
1997 11 11 32.4 1.653 35.79 -3.38 35.46 1.10 59.2 0 0 11
1998 12 12 32.5 2.073 36.56 -4.10 36.15 0.90 75.8 0 0 12
1999 13 13 33.5 0.728 37.05 -3.55 36.69 0.72 27.0 0 0 13
2000 14 14 34.9 0.711 37.42 -2.52 37.17 0.60 26.6 0 0 14
2001 15 15 33.4 0.907 37.76 -4.36 37.33 0.38 34.3 0 0 15
2002 16 16 37.7 0.868 37.70 -0.01 37.70 0.38 32.7 0 0 16
2003 17 17 38.8 0.974 38.08 0.72 38.15 0.41 37.1 0 0 17
2004 18 18 36.6 0.883 38.57 -1.98 38.37 0.31 34.0 0 0 18
2005 19 19 42.8 0.708 38.68 4.14 39.10 0.52 27.4 0 0 19
2006 20 20 36.4 0.483 39.62 -3.17 39.30 0.36 19.1 0 0 20
2007 21 21 42.2 0.852 39.66 2.57 39.92 0.49 33.8 0 0 21
2008 22 22 38.5 1.160 40.41 -1.88 40.22 0.40 46.9 0 0 22
2009 23 23 41.4 1.653 40.62 0.74 40.70 0.43 67.2 0 0 23
2010 24 24 42.7 2.073 41.13 1.61 41.29 0.52 85.3 0 0 24
#N/A 25 25 42.7 0.728 41.81 0.89 41.90 0.56 30.4 0 0 25
#N/A 26 26 42.4 0.711 42.46 -0.10 42.45 0.56 30.2 0 0 26
#N/A 27 27 44.6 0.907 43.00 1.65 43.17 0.64 39.0 0 0 27
#N/A 28 28 40.6 0.868 43.80 -3.23 43.48 0.48 38.0 0 0 28
#N/A 29 29 40.4 0.974 43.96 -3.51 43.61 0.30 42.8 0 0 29
#N/A 30 30 45.2 0.883 43.91 1.29 44.04 0.36 38.8 0 0 30
#N/A 31 31 46.1 0.708 44.40 1.67 44.57 0.45 31.4 0 0 31
#N/A 32 32 43.7 0.483 45.02 -1.32 44.88 0.38 21.7 0 0 32
#N/A 33 33 42.2 0.852 45.27 -3.03 44.96 0.23 38.6 0 0 33
#N/A 34 34 44.9 1.160 45.19 -0.28 45.17 0.22 52.4 0 0 34
#N/A 35 35 46.0 1.653 45.38 0.64 45.45 0.25 75.0 0 0 35
#N/A 36 36 50.0 2.073 45.69 4.33 46.13 0.47 94.7 0 0 36
#N/A 37 #N/A 0.728 46.59 #N/A 46.13 0.47 33.9 #N/A #N/A 37
#N/A 38 #N/A 0.711 47.06 #N/A 46.13 0.47 33.4 #N/A #N/A 38
#N/A 39 #N/A 0.907 47.52 #N/A 46.13 0.47 43.1 #N/A #N/A 39
#N/A 40 #N/A 0.868 47.99 #N/A 46.13 0.47 41.6 #N/A #N/A 40
#N/A 41 #N/A 0.974 48.45 #N/A 46.13 0.47 47.2 #N/A #N/A 41
#N/A 42 #N/A 0.883 48.92 #N/A 46.13 0.47 43.2 #N/A #N/A 42
#N/A 43 #N/A 0.708 49.38 #N/A 46.13 0.47 34.9 #N/A #N/A 43
#N/A 44 #N/A 0.483 49.85 #N/A 46.13 0.47 24.1 #N/A #N/A 44
#N/A 45 #N/A 0.852 50.31 #N/A 46.13 0.47 42.9 #N/A #N/A 45
#N/A 46 #N/A 1.160 50.78 #N/A 46.13 0.47 58.9 #N/A #N/A 46
#N/A 47 #N/A 1.653 51.24 #N/A 46.13 0.47 84.7 #N/A #N/A 47
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Exercises 
 
2-1 Terry Collins is the vice president for operations at Astro State Bank in Arcola, Texas. 
He needs a forecast of net deposits each quarter in order to develop the bank’s investment plan.  
Net deposits for the past eight quarters in thousands of dollars were: 
 

Year Qtr. Net 
Deposits

2001 1 20.0 
 2 16.5 
 3 19.9 
 4 22.9 
   

2002 1 21.4 
 2 24.6 
 3 20.7 
 4 25.5 

 
Terry does not believe there is a seasonal pattern in the data. 

a. Compute the naïve MSE. The warm-up sample is six periods. 
b. Apply simple exponential smoothing with α = .2. Compute the MSE for the 

forecasting sample. Does this beat the naïve model? 
 
2-2 A popular product in the Astros merchandise outlet, the Shed at Union Station, is Geoff 
Blum’s Color Enhancing Mousse.  Inventory is running low and we need a sales forecast to 
replenish stocks.  Sales for April – June are shown below.  Figures are in thousands of cases.  All 
colors (red, blue, plum, and indigo) are combined in the data. 
 

Apr 106
May 195
June 119

 
How many cases of mousse will the Shed sell for the remainder of the season, July – September?  
Use simple exponential smoothing with a weight of 0.50 to answer this question.  You may 
assume there is no seasonality in sales of this product. 
 
 
2-3 The data below are sales of Astro-ette Cheerleader Calendars (in millions of dollars).  
Forecast sales for 2003 – 2004.  Use trend-adjusted smoothing with level weight = 0.20, trend 
weight = 0.10, and damping parameter = 0.90. 
  

1999 $5.0
2000 $8.0
2001 $9.0
2002 $13.0
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2-4 Bob Lillis is the production manager at Sunbird, Ltd., a company which converts 
Chevrolet pickups into convertibles.  Bob needs a sales forecast for the next few years to help 
decide whether to add new production capacity. Sunbird’s sales history (in thousands of 
conversions) is: 
 

Year Conversions 
 

1995 9.4 
1996 10.7 
1997 11.0 
1998 15.1 
1999 20.6 
2000 22.1 
2001 25.8 
2002 23.0 

 
Choose an appropriate forecasting model and develop forecasts for 2003-2004. 
 
 
2-5 Lum Harris owns the Tejas Trout Farm in Manvel, Texas.  His major customer is the City 
of Sugar Land, which buys trout each quarter to restock Oyster Creek.  The number of trout 
purchases is seasonal, with the peak quarter in July through September and the trough in January 
through March.  Lum knows through experience that the seasonal pattern is very stable. He uses 
the following multiplicative seasonal indices to analyze trout sales: 
 

Qtr. Index 
 

1 .50 
2 .90 
3 1.50 
4 1.10 

 
Lum’s sales in thousands of trout for the past 2 years were: 
 

Year Qtr. Sales 
 

2001 1 204 
 2 379 
 3 633 
 4 430 
   

2002 1 191 
 2 342 
 3 650 
 4 388 
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Deseasonalize trout sales for 2001 and 2002. Use the seasonal indices given above. 
 
 
2-6 Cesar Cedeno, sales manager for Bagwell Bar-B-Q Grills, needs a sales forecast for the 
next year. He has the following data from the last 2 years (sales are in thousands of grills): 
 

Year Qtr. Sales 
 

2001 1 204 
 2 379 
 3 633 
 4 430 
   

2002 1 191 
 2 342 
 3 650 
 4 388 

 
Compute additive seasonal indices for sales by quarter, using all the data. 
 
 
2-7 For the data in the previous problem: 

a. Compute seasonally-adjusted data. 
b. Apply exponential smoothing with a linear trend, using level weight  = .2 and trend 

weight  = .1. 
c. Forecast each quarter in 2003. 
d. Seasonalize the forecasts. 

 
 
2-8 Sergeant Rusty Staub assigns police officers to watches in the Charlotte, North Carolina, 
police department.  Rusty needs a forecast of the number of incoming calls for police assistance. 
This will help determine the minimum number of officers who should be on duty for each of 
three watches: midnight to 8 A.M., 8 A.M. to 4 P.M., and 4 P.M. to midnight. 
 
Rusty has kept records of the average number of incoming calls by watch by day of the week. He 
has decided to develop a separate set of seasonal indices for each day of the week and for 
holidays. He has determined that calls made on any given day are related only to the same day in 
the previous week or the same previous holiday. 
 
Here are the numbers of calls for the last four Fridays (a typical month, with no holidays 
involved). The numbers are in hundreds: 
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Watch 

Week 
 

12 to 8 A.M. 8 A.M. to 4 P.M. 4 to 12 P.M.

1 10.1 23.8 62.4 
2 8.4 26.7 70.4 
3 9.1 21.3 78.5 
4 7.6 29.5 65.9 

 
Compute seasonal indices for the number of calls made by watch on Fridays. 
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