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Abstract

In Gardner [Gardner, E. S., Jr. (1985). Exponential smoothing: The state of the art. Journal of Forecasting, 4, 1–28], I

reviewed the research in exponential smoothing since the original work by Brown and Holt. This paper brings the state of the art

up to date. The most important theoretical advance is the invention of a complete statistical rationale for exponential smoothing

based on a new class of state-space models with a single source of error. The most important practical advance is the

development of a robust method for smoothing damped multiplicative trends. We also have a new adaptive method for simple

smoothing, the first such method to demonstrate credible improved forecast accuracy over fixed-parameter smoothing.

Longstanding confusion in the literature about whether and how to renormalize seasonal indices in the Holt–Winters methods

has finally been resolved. There has been significant work in forecasting for inventory control, including the development of

new predictive distributions for total lead-time demand and several improved versions of Croston’s method for forecasting

intermittent time series. Regrettably, there has been little progress in the identification and selection of exponential smoothing

methods. The research in this area is best described as inconclusive, and it is still difficult to beat the application of a damped

trend to every time series.
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1. Introduction

When Gardner (1985) appeared, many believed

that exponential smoothing should be disregarded

because it was either a special case of ARIMA

modeling or an ad hoc procedure with no statistical

rationale. Since 1985, the special case argument has
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been turned on its head, and today we know that

exponential smoothing methods are optimal for a very

general class of state-space models that is in fact

broader than the ARIMA class.

This paper brings the state of the art in exponential

smoothing up to date with a critical review of the

research since 1985. Prior research findings are

included where necessary to provide continuity and

context. The plan of the paper is as follows. Section 2

summarizes new information that has come to light on

the early history of exponential smoothing. Section 3
sting 22 (2006) 637–666
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gives formulations for the standard Holt–Winters

methods and a number of variations and extensions

to create equivalences to state-space models, nor-

malize seasonals, and cope with problems such as

series with a fixed drift, missing observations,

irregular updates, planned discontinuities, multiple

seasonal cycles (in the same series), and multivar-

iate series. Equivalent regression, ARIMA, and

state-space models are reviewed in Section 4. This

section also discusses variances, prediction intervals,

and some possible explanations for the robustness

of exponential smoothing. Procedures for method

and model selection are discussed in Section 5,

including the use of time series characteristics,

expert systems, information criteria, and operational

measures. Section 6 reviews the details of model-

fitting, including the selection of parameters, initial

values, and loss functions. In Section 6, we also

discuss the use of adaptive parameters to avoid

model-fitting. Applications of exponential smooth-

ing to inventory control are discussed in Section 7.

Section 8 summarizes the many empirical studies in

which exponential smoothing has been used. Con-

clusions and an assessment of the state of the art

are offered in Section 9. This plan does not include

coverage of tracking signals, a subject that has

disappeared from the literature since the earlier

paper.
2. Early history of exponential smoothing

Exponential smoothing originated in Robert G.

Brown’s work as an OR analyst for the US Navy

during World War II (Gass & Harris, 2000). In 1944,

Brown was assigned to the antisubmarine effort and

given the job of developing a tracking model for fire-

control information on the location of submarines.

This information was used in a mechanical computing

device, a ball-disk integrator, to estimate target

velocity and the lead angle for firing depth charges

from destroyers. Brown’s tracking model was essen-

tially simple exponential smoothing of continuous

data, an idea still used in modern fire-control

equipment.

During the early 1950s, Brown extended simple

exponential smoothing to discrete data and developed

methods for trends and seasonality. One of his early
applications was in forecasting the demand for spare

parts in Navy inventory systems. The savings in data

storage over moving averages led to the adoption of

exponential smoothing throughout Navy inventory

systems during the 1950s. In 1956, Brown presented

his work on exponential smoothing of inventory

demands at a conference of the Operations Research

Society of America. This presentation formed the

basis of Brown’s first book, Statistical Forecasting for

Inventory Control (Brown, 1959). His second book,

Smoothing, Forecasting, and Prediction of Discrete

Time Series (Brown, 1963), developed the general

exponential smoothing methodology. In numerous

later books, Brown integrated exponential smoothing

with inventory management and production planning

and control.

During the 1950s, Charles C. Holt, with support

from the Logistics Branch of the Office of Naval

Research (ONR), worked independently of Brown to

develop a similar method for exponential smoothing

of additive trends and an entirely different method

for smoothing seasonal data. Holt’s original work

was documented in an ONR memorandum (Holt,

1957) that went unpublished until recently (Holt,

2004a, 2004b). However, Holt’s ideas gained wide

publicity in 1960. In a landmark article, Winters

(1960) tested Holt’s methods with empirical data,

and they became known as the Holt–Winters

forecasting system. Another landmark article by

Muth (1960) was among the first to examine the

optimal properties of exponential smoothing fore-

casts. Holt’s methods of exponential smoothing were

also featured in the classic text by Holt, Modigliani,

Muth, and Simon (1960), Planning Production,

Inventories, and Work Force, a book that is still

in use today in doctoral programs in operations

management.
3. Formulation of exponential smoothing methods

Section 3.1 classifies and gives formulations for

the standard methods of exponential smoothing.

These methods can be modified to create state-space

models as discussed in Section 3.2. Seasonal indices

are not automatically renormalized in either the

standard or state-space versions of exponential

smoothing, and procedures for renormalization are



E.S. Gardner Jr. / International Journal of Forecasting 22 (2006) 637–666 639
reviewed in Section 3.3. In Section 3.4, we collect a

number of variations on the standard methods to cope

with special kinds of time series.

3.1. Standard methods

Table 1 contains equations for the standard

methods of exponential smoothing, all of which are

extensions of the work of Brown (1959, 1963), Holt

(1957), and Winters (1960). For each type of trend,

there are two sections of equations: the first gives

recurrence forms and the second gives equivalent

error-correction forms. Recurrence forms were used in

the original work by Brown and Holt and are still

widely used in practice, but error-correction forms are

simpler. The notation is from Gardner (1985) and is

defined in Table 2.

The taxonomy of Hyndman, Koehler, Snyder, and

Grose (2002), as extended by Taylor (2003a), is

helpful in describing the methods. Each method is

denoted by one or two letters for the trend (row

heading) and one letter for seasonality (column

heading). Method N-N denotes no trend with no

seasonality, or simple exponential smoothing (Brown,

1959). The other nonseasonal methods are Holt’s

(1957) additive trend (A-N), Gardner and McKenzie’s

(1985) damped additive trend (DA-N), Pegels’ (1969)

multiplicative trend (M-N), and Taylor’s (2003a)

damped multiplicative trend (DM-N). All seasonal

methods are formulated by extending the methods in

Winters (1960). Note that the forecast equations for

the seasonal methods are valid only for a forecast

horizon (m) less than or equal to the length of the

seasonal cycle ( p).

There are several differences between Table 1 and

the tables of equations in Gardner (1985). First, the DA

methods are given in recurrence forms that were not

included in the earlier paper. Second, the seasonal DA

methods were formulated with three parameters in the

earlier paper, but the same methods in Table 1 contain

four parameters as developed in Gardner and McKen-

zie (1989). Finally, the DM methods are new.

The DA-N method can be used to forecast

multiplicative trends with the autoregressive or

damping parameter / restricted to the range

1b/ b2, a method sometimes called bgeneralized
Holt.Q As Taylor (2003a) observed, generalized Holt

is a clumsy way to model a multiplicative trend
because the local slope is estimated by smoothing

successive differences of the local level. In contrast,

Pegels’ multiplicative trends (M-N, M-A, and M-M)

estimate the local growth rate by smoothing succes-

sive ratios of the local level. In hopes of producing

more robust forecasts, Taylor’s methods (DM-N,

DM-A, and DM-M) add a damping parameter / b1

to Pegels’ multiplicative trends.

Although many new models underlying exponen-

tial smoothing have been proposed since 1985, the

damped multiplicative trends are the only new

methods in the sense that they create new forecast

profiles. Like the damped additive trends, the

forecast profiles for Taylor’s methods will eventually

approach a horizontal nonseasonal or seasonally

adjusted asymptote. However, in the near term,

different values of / can be used to produce forecast

profiles that are convex, nearly linear, or even

concave.

3.2. State-space equivalent methods

There are many equivalent state-space models for

each of the methods in Table 1. Here, we review the

particular modeling framework of Hyndman et al.

(2002) that includes all methods in Table 1 except the

DM methods. In this framework, each exponential

smoothing method has two corresponding state-space

models, each with a single source of error (SSOE). One

model has an additive error and the other has a

multiplicative error. As discussed in Section 4.3, if

the parameters are the same, the two models give the

same point forecasts but different variances. The

methods corresponding to the Hyndman et al.

framework are the same as those in Table 1 with

two exceptions: we must modify all multiplicative

seasonal methods and all damped additive trend (DA)

methods.

We proceed as follows to modify the multiplicative

seasonal methods. In the N-M standard equations for

updating the multiplicative seasonal component It,

replace the smoothed level St with St�1. This change

is made in both recurrence and error-correction forms.

In the A-M, DA-M, and M-M standard equations for

updating It, replace St with St�1+Tt�1, where Tt-1 is

the previous smoothed trend, again in both recurrence

and error-correction forms. One precedent for these

modifications is found in Williams (1987), who shows



Table 1

Standard exponential smoothing methods

Trend Seasonality

N (None) A (Additive) M (Multiplicative)

N (None) St =aXt +(1�a)St�1 St =a(Xt� It�p)+ (1�a)St�1 St =a(Xt/It�p)+ (1�a)St�1
X̂t(m)=St It =d(Xt�St)+ (1�d)It�p It =d(Xt/St)+(1�d)It�p

X̂t(m)=St + It�p+m X̂t(m)=StIt�p+m

St=St�1+aet St =St�1+aet St =St�1+aet/It�p
X̂t(m)=St It = It�p +d(1�a)et It = It�p +d(1�a)et/St

X̂t(m)=St + It�p+m X̂t(m)=StIt�p+m

A (Additive) St =aXt +(1�a)(St�1+Tt�1) St =a(Xt� It�p)+ (1�a)(St�1+Tt�1) St =a(Xt/It�p)+ (1�a)(St�1+Tt�1)

Tt =c(St�St�1)+ (1�c)Tt�1 Tt =c(St�St�1)+ (1�c)Tt�1 Tt =c(St�St�1)+ (1�c)Tt�1
X̂t(m)=St +mTt It =d(Xt�St)+ (1�d)It�p It =d(Xt/St)+(1�d)It�p

X̂t(m)=St +mTt + It�p+m X̂t(m)= (St +mTt)It�p+m

St =St�1+Tt�1+aet St =St�1+Tt�1+aet St =St�1+Tt�1+aet/It�p
Tt =Tt�1+acet Tt =Tt�1+acet Tt =Tt�1+acet/It�p
X̂t(m)=St +mTt It = It�p +d(1�a)et It = It�p +d(1�a)et/St

X̂t(m)=St +mTt + It�p+m X̂t(m)= (St +mTt)It�p+m

DA (Damped additive) St =aXt +(1�a)(St�1+/Tt�1) St =a(Xt� It�p)+ (1�a)(St�1+/Tt�1) St =a(Xt/It�p)+ (1�a)(St�1+/Tt�1)

Tt =c(St�St�1)+ (1�c)/Tt�1 Tt =c(St�St�1)+ (1�c)/Tt�1 Tt =c(St�St�1)+ (1�c)/Tt�1

X̂tXt mð Þ ¼ St þ
Xm
i¼1

/iTt

It =d(Xt�St)+ (1�d)It�p It =d(Xt/St)+(1�d)It�p

X̂tXt mð Þ ¼ St þ
Xm
i¼1

/iTt þ It�pþm X̂tXt mð Þ ¼ St þ
Xm
i¼1

/iTt

 !
It�pþm

St =St�1+/Tt�1+aet St =St�1+/Tt�1+aet St =St�1+/Tt�1+aet/It�p
Tt =/Tt�1+acet Tt =/Tt�1+acet Tt =/Tt�1+acet/It�p

X̂tXt mð Þ ¼ St þ
Xm
i¼1

/iTt

It = It�p +d(1�a)et It = It�p +d(1�a)et/St

X̂tXt mð Þ ¼ St þ
Xm
i¼1

/iTt þ It�pþm X̂tXt mð Þ ¼ St þ
Xm
i¼1

/iTt

 !
It�pþm

M (Multiplicative) St =aXt +(1�a)(St�1Rt�1) St =a(Xt� It�p)+ (1�a)St�1Rt�1 St =a(Xt/It�p)+ (1�a)St�1Rt�1
Rt =c(St/St�1)+ (1�c)Rt�1 Rt =c(St/St�1)+ (1�c)Rt�1 Rt =c(St/St�1)+(1�c)Rt�1
X̂t(m)=St Rt

m It =d(Xt�St)+ (1�d)It�p It =d(Xt/St)+(1�d)It�p
X̂t(m)=StRt

m + It�p+m X̂t(m)= (StRt
m)It�p+m

St =St�1Rt�1+aet St =St�1Rt�1+aet St =St�1Rt�1+aet/It�p
Rt =Rt�1+acet/St�1 Rt =Rt�1+acet/St�1 Rt =Rt�1+ (acet/St�1)/It�p
X̂t(m)=StRt

m It = It�p +d(1�a)et It = It�p +d(1�a)et/St
X̂t(m)=StRt

m + It�p+m X̂t(m)= (StRt
m)It�p+m

DM (Damped multiplicative) St =aXt +(1�a)(St�1Rt�1
/ ) St =a(Xt� It�p)+ (1�a)St�1Rt�1

/ St =a(Xt/It�p)+ (1�a)(St�1Rt�1
/ )

Rt =c(St/St�1)+ (1�c)Rt�1
/ Rt =c(St/St�1)+ (1�c)Rt�1

/ Rt =c(St/St�1)+(1�c)Rt�1
/

X̂X t mð Þ ¼ StR

Pm

i¼1 /i

t

It =d(Xt�St)+ (1�d)It�p It =d(Xt/St)+(1�d)It�1

X̂X t mð Þ ¼ StR

Pm

i¼1 /i

t þ It�pþm X̂X t mð Þ ¼ StR

Pm

i¼1 /i

t

� �
It�pþm

St =St�1Rt�1
/ +aet St =St�1Rt�1

/ +aet St =St�1Rt�1
/ +aet/It�p

Rt =Rt�1
/ +aget/St�1 Rt =Rt�1

/ +acet/St�1 Rt =Rt�1
/ +(acet/St�1)/It�p

It = It�p +d(1�a)et It = It�p +d(1�a)et/St

X̂X t mð Þ ¼ StR

Pm

i¼1 /i

t X̂X t mð Þ ¼ StR

Pm

i¼1 /i

t þ It�pþm X̂X t mð Þ ¼ StR

Pm

i¼1 /i

t

� �
It�pþm

For each type of trend, there are two sections of equations: the first gives recurrence forms and the second gives equivalent error-correction

forms.
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Table 2

Notation for exponential smoothing

Symbol Definition

a Smoothing parameter for the level of the series

c Smoothing parameter for the trend

d Smoothing parameter for seasonal indices

/ Autoregressive or damping parameter

b Discount factor, 0Vb V1
St Smoothed level of the series, computed after Xt is observed. Also the expected value of the

data at the end of period t in some models

Tt Smoothed additive trend at the end of period t

Rt Smoothed multiplicative trend at the end of period t

It Smoothed seasonal index at the end of period t. Can be additive or multiplicative

Xt Observed value of the time series in period t

m Number of periods in the forecast lead-time

p Number of periods in the seasonal cycle

X̂t(m) Forecast for m periods ahead from origin t

et One-step-ahead forecast error, et =Xt� X̂ t�1(1). Note that et(m) should be used for other

forecast origins

Ct Cumulative renormalization factor for seasonal indices. Can be additive or multiplicative

Vt Transition variable in smooth transition exponential smoothing

Dt Observed value of nonzero demand in the Croston method

Qt Observed inter-arrival time of transactions in the Croston method

Zt Smoothed nonzero demand in the Croston method

Pt Smoothed inter-arrival time in the Croston method

Yt Estimated demand per unit time in the Croston method (Zt/Pt)
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that they allow us to update each component

independently. Archibald (1990) made the same point

without reference to the work of Williams. Perhaps

another reason to use the multiplicative seasonal

modifications is that, as Ord (2004) observed, this

was done in Holt’s original work (1957). However,

Holt et al. (1960) and Winters (1960) discarded the

modifications and used the standard equations in

Table 1.

What are the practical consequences of adopting the

state-space versions of the multiplicative seasonal

methods? The answer to this question awaits empirical

study. In an analysis of the A-M method, Koehler,

Snyder, and Ord (2001) show that the difference

between the two versions of the equation for updating

the seasonal component will be small, provided that all

three smoothing parameters are less than about 0.3.

However, Koehler et al. warn that negative seasonal

components can occur in the state-space version of A-

M unless the forecast errors are much less variable than

the data.

To modify the standard DAmethods (for any type of

seasonality), we begin with the level equations. The
previous trend is not damped in the state-space level

equations, so we delete / (replace /Tt�1 with Tt-1).

Next, the forecast equations are changed to begin

damping at two steps ahead, rather than immediately as

in Table 1. The forecast equation in the nonseasonal

state-space equivalent method (DA-N) is:

X̂X t mð Þ ¼ St þ
Xm�1
i¼0

/iTt

 !
ð1Þ

In Eq. (1), T can be interpreted as a growth rate,

something that is not possible in the standard method

unless / =1. If a least-squares criterion is used to find

both initial values and parameters, the standard and

state-space DA methods will produce the same fore-

casts, although the estimates of T and the smoothing

parameter for the trend (c) will differ by a factor of /.

3.3. Renormalization of seasonal indices

The standard seasonal methods are initialized so

that the average seasonal index is 0 (additive) or 1
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(multiplicative); thereafter, normalization goes astray

because only one seasonal index is updated each

period. The problem of renormalization was over-

looked in Gardner (1985), and there has been much

confusion in the literature about whether it is

necessary to renormalize the seasonal indices, and, if

so, when and how this should be done.

To analyze renormalization in the A-A method,

Lawton (1998) used an equivalent state-space

model. When A-A seasonal indices are not renor-

malized, Lawton found that estimates of trend are

correct but level and seasonals are biased. Fortu-

nately, the errors in estimating level and seasonals

are counter-balancing and do not impact the fore-

casts. Alternative A-A renormalization equations are

found in McKenzie (1986), Newbold (1988), and

Roberts (1982). These authors go about renormali-

zation in different ways, but their point forecasts are

equivalent to each other and to point forecasts from

the standard equations.

For the A-M method, renormalization equations

were developed by McKenzie (1986) and Roberts

(1982), but their point forecasts differ from each

other and from the standard equations. Therefore,

Archibald and Koehler (2003) developed new A-M

renormalization equations that give the same point

forecasts as the standard equations. They also

developed analogous A-A renormalization equations

that are reformulations of those originally developed

by Roberts and McKenzie. Finally, Archibald and

Koehler derived cumulative renormalization correc-

tion factors for the A-A and A-M methods. These

correction factors are easily extended to other

methods and should prove to be popular in practice

because they allow the user to keep the standard

equations and renormalize the seasonal indices at

any point in time.

The cumulative renormalization correction factor

Ct for the A-A method is computed iteratively using a

simple equation:

Ct ¼ Ct�1 þ det=p ð2Þ

To renormalize at any time, add Ct to the level and

subtract it from each seasonal index. Archibald and

Koehler derived the cumulative renormalization cor-

rection factor for the A-M method using the state-
space version. Here, we give the correction factor for

the standard A-M version in Table 1:

Ct ¼ Ct�1 1þ det=pStð Þ ð3Þ

To renormalize at any time, multiply level and trend

by Ct and divide each seasonal index by Ct. If the

state-space A-M version is used, replace St with St-1+

Tt�1 in Eq. (3).

3.4. Other variations on the standard methods

When observations are missing, Wright’s (1986a,

1986b) solution is straightforward. Missing observa-

tions receive zero weight, while the others are

exponentially weighted according to the age of the

observation. Wright gives modified formulas for the

N-N and A-N methods that automatically adjust the

weighting pattern for all observations following a gap.

These formulas also work for the equivalent problem

of observations that naturally occur at irregular time

intervals. Wright’s procedure was extended by Cipra,

Trujillo, and Rubio (1995) to seasonal methods. An

alternative to Wright’s procedure is given by Aldrin

and Damsleth (1989), who compute optimal weights

on past data using equivalent ARIMA models. It is

not clear that the ARIMA procedure is worth the

trouble because the authors analyzed two time series

and got about the same results as Wright. If

observations are missing because they have been

combined with other observations, see Anderson

(1994), Johnston (1993), and Walton (1994) for

adjustments to the N-N smoothing parameter.

There may be planned discontinuities in a time

series. For example, we may expect a disruption in

demand following a price change or a new product

introduction. There are three ways of dealing with

planned discontinuities in exponential smoothing. If

discontinuities are recurring, Carreno and Madinavei-

tia (1990) add an index similar to a seasonal index to

the A-N method to model the effects. When the effects

of discontinuities cannot be estimated from history,

judgmental adjustments to the forecasts are usually

necessary. Williams and Miller (1999) recommend

making such adjustments within the exponential

smoothing method rather than as a second-stage

correction outside the method. It may be possible to

express planned discontinuities as a set of linear
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restrictions on the forecasts from a linear exponential

smoothing method. If so, Rosas and Guerrero (1994)

show that one can compute weights that meet the

restrictions in the moving-average representation of

the equivalent ARIMA model.

The N-N method can be enhanced by adding a drift

(fixed trend) term, making the method equivalent to

the bTheta method of forecastingQ (Assimakopoulos &

Nikolopoulos, 2000) that performed well in the M3

competition (Makridakis & Hibon, 2000). In a

mathematical tour de force, Hyndman and Billah

(2003) showed that the Theta method is the same

thing as simple smoothing with drift equal to half the

slope of a linear trend fitted to the data. Another way

to match the Theta method is to use the same drift

choice in the A-N method with the trend parameter set

to zero. We do not know why the particular drift

choice in the Theta method or its equivalents is better

than any other, nor is it clear when one should prefer a

fixed drift over a smoothed trend.

For time series containing two seasonal cycles,

Taylor (2003b) adds one more seasonal component to

the A-M method. The new method was applied to

electricity demand recorded at half-hour intervals, with

one seasonal equation for a within-day seasonal cycle

and another for a within-week cycle. As so often

happens in complex time series forecasted with

exponential smoothing, Taylor found significant first-

order autocorrelation in the residuals. Thus, he fitted an

AR(1) model to remove it, estimating the AR(1)

parameter at the same time as the smoothing parame-

ters. The resulting forecasts outperformed those from

the standard A-M method as well as a double seasonal

ARIMA model.

Rather than add a seasonal component, Snyder and

Shami (2001) eliminate it from the A-A method. The

seasonal component is incorporated into the level,

which depends on the level a year ago and is augmented

by the total growth in all seasons during the past year.

Thus, their parsimonious method requires only two

parameters. Snyder and Shami found that the two-

parameter version of A-A was less accurate than the

standard three-parameter version, although the differ-

ences were not statistically significant.

Some of the univariate methods in Table 1 have been

generalized to the multivariate case by Enns, Machak,

Spivey, and Wrobleski (1982), Harvey (1986), Jones

(1966), and Pfefferman and Allon (1989). For the N-N
method, Jones and Enns et al. simply replaced the

scalars with matrices. In error-correction form, the

multivariate version of N-N is then:

St ¼ St�1 þ aaaaaaaaaaet ð4Þ

With k series, the dimensions of St, St�1, and et are

k�1, and the dimension of aaaaaaaaaaaaaa is k�k. Enns et al.

assume that the series are produced by a multivariate

randomwalk and estimate the parameters by a complex

maximum likelihood procedure. Harvey achieved a

profound simplification by proving that one can

forecast the individual series using univariate methods.

The univariate parameters are chosen by a grid search

to minimize the sum of vector products of the one-step-

ahead errors, a procedure that approximates maximum-

likelihood estimation. Harvey also developed multi-

variate models with trend and seasonal components.

Again, we replace the scalars with matrices in the error-

correction forms of the univariate trend and seasonal

methods, with parameters chosen in the same way as

for multivariate N-N. Pfefferman and Allon analyzed

the multivariate A-A method and derived several

structural models that produce optimal forecasts.

Pfefferman and Allon also presented what appears to

be the only empirical evidence on multivariate expo-

nential smoothing. In forecasting two bivariate time

series of Israeli tourism data, multivariate A-A was

significantly more accurate than univariate A-A.
4. Properties

Each exponential smoothing method in Table 1

corresponds to one or more stochastic models. The

possibilities include regression, ARIMA, and state-

space models, as discussed in Sections 4.1–4.3. The

associated research on variances and prediction

intervals is discussed in Section 4.4. The most

important property of exponential smoothing is robust-

ness, reviewed in Section 4.5. Discussion of the

property of invertibility is deferred until Section 6.1

on parameter selection. The theoretical relationships

between judgmental forecasting and exponential

smoothing are beyond our scope, although we note

in passing that several exponential smoothing meth-

ods are treated as models of judgmental extrapolation

(see for example Andreassen & Kraus, 1990).
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4.1. Equivalent regression models

In large samples, several versions of exponential

smoothing are equivalent to exponentially weighted or

DLS regression models (Brown, 1963; Gardner &

McKenzie, 1985, 1988). General exponential smooth-

ing (GES) (Brown, 1963) also relies on DLS

regression with either one or two discount factors to

fit a variety of functions of time to the data, including

polynomials, exponentials, sinusoids, and their sums

and products. A detailed review of GES is available in

Gardner (1985), and since that time only a few papers

on the subject have appeared.

Gijbels, Pope, and Wand (1999) and Taylor

(2004c) showed that GES can be viewed in a kernel

regression framework. Gijbels et al. found that

simple smoothing (N-N) is actually a zero-degree

local polynomial kernel model, an idea that can be

extended to trends and seasonality although the

details are unpleasant. Taylor (2004c) proposed

another type of kernel regression, an exponentially

weighted quantile regression (EWQR). The rationale

for EWQR is that it is robust to distributional

assumptions. EWQR turns out to be equivalent to

simple exponential smoothing of the cumulative

density function (the inverse of the quantile func-

tion). We can also think of EWQR as an extension of

GES to quantiles. Just as DLS delivers exponential

smoothing for the mean, EWQR delivers the analogy

for quantiles. A special case of EWQR was

developed by Cipra (1992), who extended GES to

the median by replacing the DLS criterion with

discounted least absolute deviations.

The only other GES research since 1985 is by

Bartolomei and Sweet (1989), who compared GES to

the A-A and A-M methods using 47 time series from

the M1 competition (Makridakis et al., 1982). The

authors found little difference in forecast accuracy,

although they speculated that one of the damped-trend

methods might have done better.

4.2. Equivalent ARIMA models

All linear exponential smoothing methods have

equivalent ARIMA models. The easiest way to see the

nonseasonal models is through the DA-N method,

which contains at least six ARIMA models as special

cases (Gardner & McKenzie, 1988). If 0b/ b1, the
DA-N method is equivalent to the ARIMA (1, 1, 2)

model, which can be written as

1� Bð Þ 1� /Bð ÞXt ¼ 1� 1þ /� a� /acð ÞB½
� / a� 1ð ÞB2

�
et ð5Þ

We obtain an ARIMA (1, 1, 1) model by setting a =1.
With a =c =1, the model is ARIMA (1, 1, 0). When

/ =1, we have a linear trend (A-N) and the model is

ARIMA (0, 2, 2):

1� Bð Þ2Xt ¼ 1� 2� a� acð ÞB� a� 1ð ÞB2
� �

et

ð6Þ

When / =0, we have simple smoothing (N-N) and the

equivalent ARIMA (0, 1, 1) model:

1� Bð ÞXt ¼ 1� 1� að Þ½ �et ð7Þ

The ARIMA (0, 1, 0) random walk model can be

obtained from (7) by choosing a =1. ARIMA-equiv-

alent seasonal models for the linear exponential

smoothing methods exist, although most are so

complex that it is unlikely they would ever be

identified through Box–Jenkins procedures.

4.3. Equivalent state-space models

The equivalent ARIMAmodels do not extend to the

nonlinear exponential smoothing methods. The only

statistical rationale for exponential smoothing that

includes nonlinear methods is due to Ord, Koehler,

and Snyder (1997). Prior to this work, state-space

models for exponential smoothing were formulated

using multiple sources of error (MSOE). For example,

simple exponential smoothing (N-N) is optimal for a

model with two sources of error (Muth, 1960). The

observation and state equations are written:

Xt ¼ ‘ t þ mt ð8Þ

‘ t ¼ ‘t�1 þ gt ð9Þ

The unobserved state variable ‘t denotes the local level
at time t, and the error terms mt and gt are generated by

independent white noise processes. Using different

methods, various authors (Chatfield, 1996; Harrison,

1967; Nerlove & Wage, 1964; Theil & Wage, 1964)

showed that simple smoothing is optimal with a
determined by the ratio of the variances of the noise
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processes. Harvey (1984) also showed that the Kalman

filter for (8) and (9) reduces to simple smoothing in the

steady state.

For the trend and seasonal versions of exponential

smoothing, the MSOE models are complex, as

demonstrated in Proietti (1998, 2000), who gives

examples of models that are equivalent to linear

versions of exponential smoothing. Another limitation

of the MSOE approach is that researchers have been

unable to find such models that correspond to

multiplicative-seasonal versions of exponential

smoothing. In response to these problems, Ord et al.

(1997) built on the work of Snyder (1985) to create a

general, yet remarkably simple class of state-space

models with a single source of error (SSOE). For

example, the SSOE model with additive errors for the

N-N method is written as follows:

Xt ¼ ‘ t�1 þ et ð10Þ

‘t ¼ ‘t�1 þ aet ð11Þ

Note that the observation Eq. (10) includes ‘t-1 rather

than ‘t as in Eq. (8) of the MSOE model. The error

term et in the observation equation is then the one-

step-ahead forecast error assuming knowledge of the

level at time t�1. The correspondence to simple

smoothing is seen in the state Eq. (11), which is the

error-correction form of simple smoothing in Table 1,

except that the level ‘ is substituted for the smoothed

level S.

For the multiplicative-error N-N model, we alter

the additive-error SSOE model as follows:

Xt ¼ ‘t�1 þ ‘t�1et ð12Þ

‘t ¼ ‘t�1 1þ aetð Þ ¼ ‘t�1 þ a‘t�1et ð13Þ

In this case, the one-step-ahead forecast error is still

Xt� ‘t�1, but it is no longer the same as et. The state

Eq. (13) becomes

‘t ¼ ‘t�1

þ a‘t�1
Xt � ‘t�1
‘t�1

�
¼ ‘t�1 þ a Xt � ‘t�1ð Þ

�
ð14Þ

Thus, we have shown that the multiplicative-error state

equation can be written in the error-correction form of

simple smoothing. It follows that the state equations
are the same in the additive- and multiplicative-error

cases, and this is true for all SSOE models.

Following similar logic, Hyndman et al. (2002)

extended Ord et al.’s class of SSOE models to include

all the methods of exponential smoothing in Table 1

except the DM methods. Because the state equations

for all models are the same as the error-correction

forms of exponential smoothing (with modifications

as discussed in Section 3.2), the observation equations

are obvious. In the Hyndman et al. framework, there

are 12 basic models, each with additive or multipli-

cative errors, in effect giving 24 models in total.

Hyndman et al. (2002) remark that the additive- and

multiplicative-error models give the same point

forecasts, but this is true only if the same parameters

are found during model-fitting, an improbable occur-

rence. The additive-error models are usually fitted to

minimize the sum of squared errors, but the multipli-

cative-error models are fitted to minimize the sum of

squared relative errors, where the errors are relative to

the one-step-ahead forecasts rather than the data.

The theoretical advantage of the SSOE approach to

exponential smoothing is that the forecast errors can

depend on the other components of the time series. As

an illustration, consider the N-N method/model. For

the additive-error version, the variance of the one-

step-ahead forecast errors is Var(et)=r2, while the

variance for the multiplicative-error model changes

with the level component, that is Var(‘t�1et)=‘ t�1
2 r2.

In the more complex models, multiplicative-error

effects can be profound because the variance changes

with every component of the time series (level, trend,

and seasonality).

To put the theoretical advantage of the SSOE

approach another way, each of the linear exponential

smoothing models with additive errors has an ARIMA

equivalent. However, the linear models with multipli-

cative errors and the nonlinear models are beyond the

scope of the ARIMA class. As Koehler et al. (2001)

and Hyndman et al. (2002) observed, their state-space

models are not unique and many other such models

could be formulated. Some additional possibilities are

discussed in Chatfield, Koehler, Ord, and Snyder

(2001), the most readable reference on the state-space

foundation for exponential smoothing.

The only theoretical criticism of the SSOE

approach appears to be an OR Viewpoint by Johnston

(2000) on a paper by Snyder, Koehler, and Ord (1999)
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discussed in Section 7 on inventory control. Johnston

argued that the SSOE model for simple smoothing is

not really a model at all and should be viewed as an

estimation procedure. However, Snyder, Koehler, and

Ord (2000) pointed out that both the SSOE and

MSOE models for simple smoothing are special cases

of a more general state-space model. For additional

discussion of the theoretical relationships amongst

these models, see Harvey and Koopman (2000) and

Ord, Snyder, Koehler, Hyndman, and Leeds (2005).

4.4. Variances and prediction intervals

Variances and prediction intervals for point fore-

casts from exponential smoothing can be computed

using either empirical or analytical procedures.

Empirical procedures are available in Gardner

(1988) and Taylor and Bunn (1999). Because post-

sample forecast errors are usually much larger than

fitted errors, I used the Chebyshev distribution to

compute probability limits from DA-N fitted errors at

different forecast horizons. For data from the M1

competition, coverage percentages were very close to

targets. Nevertheless, Chatfield and Yar (1991)

complained that this procedure often results in

constant variance as the lead time increases, while

Chatfield (1993) observed that the intervals are

sometimes too wide to be of practical use. These

criticisms do not apply to the work of Taylor and

Bunn, who proposed another way to avoid a normality

assumption. They used quantile regression on the

fitted errors to obtain prediction intervals that are

functions of forecast lead time as suggested by

theoretical variance expressions. For the N-N, A-N,

and DA-N methods, Taylor and Bunn obtained

excellent results in both simulated and M1 data.

Analytical prediction intervals can be computed in

several different ways. The wrong way to do so is to

use s
ffiffiffiffi
m
p

as the standard deviation of m-step-ahead

forecast errors, where s is the standard deviation of the

one-step-ahead errors. This expression has been used

in the literature for various exponential smoothing

methods but is correct only when the optimal model is

a random walk. For other models, the expression can

be seriously misleading, as discussed in Chatfield and

Koehler (1991), Koehler (1990), and Yar and Chat-

field (1990). The expression s
ffiffiffiffi
m
p

has also been used

for the standard deviation of cumulative lead time
demand m steps ahead, but this is also wrong as

discussed in Section 7.1.

The simplest analytical approach to variance

estimation is based on the assumption that the series

is generated by deterministic functions of time (plus

white noise) that are assumed to hold in a local

segment of the series. See Brown (1963), McKenzie

(1986), and Sweet (1985) for results using this

approach. However, Newbold and Bos (1989) called

the use of deterministic functions of time grossly

inaccurate in criticizing the work of Brown, Sweet,

McKenzie, Gardner (1983, 1985), and many other

authors. Newbold and Bos state that any amount of

empirical evidence supports their criticism, although it

is curious that they give no references. There is no

such empirical evidence in the references listed below,

or in the references to Gardner (1985).

For the A-A method, an analytical variance

expression was derived by Yar and Chatfield (1990),

who assumed only that one-step-ahead errors are

uncorrelated. But for this to be true, the equivalent

ARIMA model must be optimal. Thus, Yar and

Chatfield’s variance expression turns out to be the

same as that of the equivalent ARIMA model. In a

follow-on study, Chatfield and Yar (1991) found an

approximate formula for the A-M method, again by

assuming that the one-step-ahead errors are uncorre-

lated. In contrast to the additive case, they showed that

the width of the multiplicative prediction intervals

depends on the time origin and can change with

seasonal peaks and troughs.

For the SSOE state-space models, there are numer-

ous recent papers containing variance results that can

be sorted out as follows. Empirical procedures for

variance estimation, including bootstrapping and sim-

ulation from an assumed model, in both cases with

either additive or multiplicative errors, are found in Ord

et al. (1997), Snyder (2002), Snyder et al. (1999),

Snyder, Koehler, and Ord (2002), Snyder, Koehler,

Hyndman, and Ord (2004), and Hyndman et al. (2002).

Analytical variance expressions for various models,

with prediction intervals computed from the normal

distribution, are found in Ord et al. (1997), Koehler et

al. (2001), Snyder, Ord, and Koehler (2001), Snyder et

al. (1999, 2002, 2004), and Hyndman, Koehler, Ord,

and Snyder (2005). We can also classify the papers

according to whether they deal with the variance

around cumulative or point forecasts. Variances for
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cumulative forecasts are found in Snyder (2002) and

Snyder et al. (2001, 2002, 2004), and are most used in

inventory control, as discussed in Section 7.1, while

the other papers deal with point forecasts. Hyndman,

Koehler, et al. (2005) is an extremely valuable

reference because it contains all known results for

variances and prediction intervals around point fore-

casts. The models are divided into three classes. The

first class includes linear models with additive errors

and ARIMA equivalents, corresponding to the N-N,

A-N, DA-N, N-A, A-A, and DA-A methods. The

second class includes the same models, but now the

errors are assumed to be multiplicative to enable the

variance to change with the level and trend of the time

series. In the third class, including the N-M, A-M, and

DA-M methods, the variance changes with level,

trend, and the multiplicative seasonal pattern. Equa-

tions for some of the exact prediction intervals are

tedious, so handy approximations are given. Note that

a few state-space models are not included in the

Hyndman, Koehler, et al. (2005) classification and

may prove to be intractable.

Thus, for most state-space models, we have four

options for prediction intervals. They can be empirical

or analytical, and each type can have additive or

multiplicative errors. There is no guidance on how

one should choose from these options. Hyndman,

Koehler, et al. (2005) do not test their analytical

prediction intervals with real data, so there is no way

to compare performance to the empirical results in

earlier papers. Because of the normality assumption,

the analytical prediction intervals will almost certainly

prove to be too narrow. This was also the case with

their empirical prediction intervals in the M1 and M3

data (Hyndman et al., 2002).

4.5. Robustness

The equivalent models help explain the general

robustness of exponential smoothing, although there

are other possible explanations for the performance of

several methods. For the DA-N method, the process

of computing minimum-MSE parameters is an indi-

rect way to identify a more specific model from the

special cases it contains. For the A-A method, a

simulation study by Chen (1997) showed that forecast

accuracy was not sensitive to the assumed data

generating process. It seems reasonable to assume
that Chen’s conclusion applies to the other additive

seasonal methods.

Simple smoothing (N-N) is certainly the most

robust forecasting method and has performed well in

many types of series not generated by the equivalent

ARIMA (0, 1, 1) process. Such series include the

very common first-order autoregressive processes

and a number of lower-order ARIMA processes

(Cogger, 1973; Cohen, 1963; Cox, 1961; Pandit &

Wu, 1974; Tiao & Xu, 1993). Bossons (1966)

showed that simple smoothing is generally insensi-

tive to specification error, especially when the mis-

specification arises from an incorrect belief in the

stationarity of the generating process. Related work

by Hyndman (2001) shows that ARIMA model

selection errors can inflate MSEs compared to simple

smoothing. Hyndman simulated time series from an

ARIMA (0, 1, 1) process and fitted a restricted set of

ARIMA models of order (0, 1, 1), (1, 1, 0), and (1,

1, 1), each with and without a constant term. The

best model was selected using Akaike’s Information

Criterion (AIC) (Akaike, 1970). The ARIMA fore-

cast MSEs were significantly larger than those of

simple smoothing due to incorrect model selections,

a problem that became worse when the errors were

non-normal.

Simple smoothing has done especially well in

forecasting aggregated economic series with rela-

tively low sampling frequencies. Rosanna and Seater

(1995) show that such series can often be approx-

imated by an ARIMA (0, 1, 1) process. This finding

has been misinterpreted by some researchers. The

series examined by Rosanna and Seater were not

generated by an ARIMA (0, 1, 1) process. The

series were sums of averages over time of data

generated more frequently than the reporting inter-

val. The effects of averaging and temporal aggrega-

tion were to destroy information about the

generating process, producing series for which the

ARIMA (0, 1, 1) process was merely an artifact.

Much the same problem can occur in company-level

data. For example, simple exponential smoothing

was a very competitive method in Schnaars’ (1986)

study of annual unit sales series for a variety of

products.

Satchell and Timmermann (1995) give a different

explanation for the performance of simple smoothing

in economic time series. In Muth (1960), simple
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smoothing was shown to be equivalent to a random

walk with noise model, assuming that the process

began an infinite number of periods ago. Satchell and

Timmerman re-examined this model and derived an

explicit formula for weights when the time series has a

finite history. They found that exponentially declining

weights are surprisingly robust as long as the ratio of

the variance of the random walk process to the

variance of the noise component is not exceptionally

small.
5. Method selection

The definitions of aggregate and individual method

selection in the work of Fildes (1992) are useful in

exponential smoothing. Aggregate selection is the

choice of a single method for all time series in a

population, while individual selection is the choice of

a method for each series. In commentary on the M-3

competition, Fildes (2001) summed up the state of the

art in time series method selection: In aggregate

selection, it is difficult to beat the damped-trend

version of exponential smoothing. In individual

selection, it may be possible to beat the damped

trend, but it is not clear how one should proceed. The

evidence reviewed below supports this judgment and

the research on individual selection of exponential

smoothing methods is best described as inconclusive.

Individual method selection can be done in a variety

of ways, as discussed in Sections 5.1–5.4. In Section

5.5, we briefly consider the problems in identification

as opposed to selection. The question of whether out-

of-sample criteria should be used for method selection

is beyond our scope—see Tashman (2000) for a

review.

5.1. Time series characteristics

Method-selection procedures using time series

characteristics have been proposed by Gardner and

McKenzie (1988), Meade (2000), and Shah (1997). In

the Gardner–McKenzie procedure, method selection

is done using the variances of differences of the data.

The N-N method is selected when differencing serves

only to increase variance. If a nonseasonal difference

of order 1 minimizes variance, the DA-N method is

selected because that is the order of differencing in the
equivalent ARIMA process. If a nonseasonal differ-

ence of order 2 minimizes variance, the equivalent

ARIMA process suggests the A-N method. Finally, a

seasonal method is used when a seasonal difference

reduces variance.

Using M1-competition data, the Gardner–McKen-

zie procedure was slightly better than the DA-N

method applied to all nonseasonal series, with the

DA-M method applied to all seasonal series. The

Gardner–McKenzie procedure was also tested by

Tashman and Kruk (1996), who made comparisons

to two alternatives, a condensed version of rule-based

forecasting (see Section 5.2) and selection using the

Bayesian Information Criterion (BIC) (Schwarz,

1978). Using data from the M2 competition (Makri-

dakis et al., 1993) as well as Schnaars’ (1986)

collection of annual time series, Tashman and Kruk

found little agreement among the selection procedures

about the best method for many time series. Gardner–

McKenzie and rule-based forecasting gave similar

accuracy that was better than the BIC, but all three

procedures had trouble differentiating between appro-

priate and inappropriate applications of both the

damped trend and simple smoothing. Taylor (2003a)

also obtained somewhat disconcerting results with the

Gardner–McKenzie procedure. In tests using monthly

series from the M3 competition, some series that were

clearly trending were classified as stationary due to

high levels of variance.

Shah (1997) proposed method selection based on

discriminant analysis of descriptive statistics for

individual series. His procedure identified methods

significantly more accurate than use of the same

method for all time series, a conclusion that is difficult

to generalize because of the limited range of methods

and data considered. Shah used only three candidate

methods (N-N, A-M, and Harvey’s basic structural

model) and applied them only to the quarterly time

series in the M1 collection. It would be helpful to have

discriminant analysis results when selection is made

from a larger group of candidate methods such as that

in Table 1.

The most exhaustive study of method selection, a

paradigm of research design in comparative methods,

is found in Meade (2000), whose candidates included

two naı̈ve methods, a deterministic trend, the robust

trend of Fildes (1992), methods selected automatically

from the ARIMA and ARARMA classes, and three
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exponential smoothing methods (N-N, A-N, and DA-

N) applied to seasonally adjusted data when appro-

priate. Meade simulated time series from a wide range

of ARIMA and ARARMA processes, fitted all

alternative methods, and computed descriptive statis-

tics for data used in model-fitting. These statistics

were used as explanatory variables in a regression-

based performance index for each method. Meade

tested his procedure with additional simulated series

as well as the 1001 series from the M1 competition

and Fildes’ collection of 261 telecommunications

series. In the simulated series, Meade’s procedure

consistently selected the best method from all

candidates. This was expected because the series

were generated from one of the candidate methods. In

the M1 series, the results were less encouraging, with

selected methods ranking fifth in median performance

and second in mean performance. In the Fildes series,

the selected methods ranked fourth for both median

and mean performance, although it is by now well

established that Fildes’ robust trend is the only

reasonable method for these series. Meade’s proce-

dure, like that of Shah, may have merit in selection

from the exponential smoothing class, but it is

difficult to tell.

5.2. Expert systems

Expert systems for individual selection have been

proposed by Collopy and Armstrong (C&A) (1992),

Vokurka, Flores, and Pearce (1996), Adya, Collopy,

Armstrong, and Kennedy (2001), Arinze (1994), and

Flores and Pearce (2000). C&A’s rule-based fore-

casting system includes 99 rules constructed from

time series characteristics and domain knowledge.

These rules combine the forecasts from four meth-

ods: a random walk, time series regression, Brown’s

double exponential smoothing, and the A-N method.

This is an odd set of candidate methods because

Brown’s method is a special case of the A-N

method. Because the C&A approach requires con-

siderable human intervention in identifying features

of time series, Vokurka et al. (1996) developed a

completely automatic expert system that selects from

a different set of candidate methods: the N-N and

DA-N methods, classical decomposition, and a

combination of all candidates. C&A and Vokurka

et al. tested their systems using 126 annual time
series from the M1 competition and concluded that

they were more accurate than various alternatives.

However, they did not compare their results to

aggregate selection of the DA-N method. Gardner

(1999) made this comparison and found that

aggregate selection of the DA-N method was more

accurate at all forecast horizons than either version

of rule-based forecasting.

Another version of rule-based forecasting by Adya

et al. (2001) reduced C&A’s rule base from 99 to 64

rules for data with no domain knowledge. They also

deleted Brown’s double exponential smoothing from

the list of candidate methods. Adya et al. tested their

system in the M3 competition and obtained better

results. Rule-based forecasting was slightly more

accurate than aggregate selection of DA-N in annual

data and performed about the same as DA-N in

seasonally adjusted monthly and quarterly data.

Arinze (1994) developed a rule-induction type of

expert system to select from the N-N, A-N, and A-M

methods, adaptive filtering, moving averages, and

time series decomposition. Arinze tested his system

using 85 aggregate economic series and found that it

picked the best method about half the time. Another

rule-induction system was developed by Flores and

Pearce (2000) and tested with M3 competition data.

Flores and Pearce were pessimistic about their results,

which at best were mixed.

5.3. Information criteria

Numerous information criteria are available for

selection of an exponential smoothing method.

Information criteria have an advantage over the

procedures discussed in Sections 5.1–5.2 in that they

can distinguish between additive and multiplicative

seasonality. The disadvantage of information criteria

is that the computational burden can be significant.

For example, Hyndman et al. (2002) recommend

fitting all models (from their set of 24 alternatives)

that might conceivably be appropriate for a time

series, then selecting the one that minimizes the AIC.

In the M1 and M3 data, the Hyndman et al. procedure

gave accuracy results that compared favorably to

commercial software and rule-based forecasting,

although, like most of the selection procedures

discussed above, they did not compare their results

to aggregate selection of the DA-N method. A
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comparison of the M1 results in Hyndman et al.

(2002) with those in Gardner and Mckenzie (1985)

shows that the DA-N method was significantly more

accurate than the state-space models, both overall and

at most individual forecast horizons. This conclusion

holds for both the 1,001 series and the subset of 111

series. For the M3 series, we can compare DA-N

results from Makridakis and Hibon (2000) to

Hyndman et al. (2002). In the annual M3 series,

overall and at every horizon, DA-N was more

accurate than the state-space models; in the quarterly

series, the state-space models have a small advantage

at horizons 1 and 2, but overall DA-N was more

accurate. For the monthly M3 series, we have

additional results for Taylor’s (2003a) DM-N method.

The state-space models have a small advantage in the

short term over DA-N and DM-N, but overall there is

little to choose among the three alternatives.

Later work by Billah, Hyndman, and Koehler

(2005) compared eight information criteria used to

select from four exponential smoothing methods. The

criteria included the AIC, BIC, and other standards, as

well as two new Empirical Information Criteria (EIC)

that penalize the likelihood of the data by a function

of the number of parameters in the model. One of the

EIC penalty functions is linear, while the other is

nonlinear, and neither depends on the length of the

time series (they are intended for use in groups of

series with similar lengths). Billah et al.’s candidate

exponential smoothing methods included N-N, N-N

with drift (see Section 3.4), A-N, and the state-space

version of DA-N. Billah et al. tested the criteria with

simulated time series and seasonally adjusted M3

data. Although the EIC criteria performed better than

the others, this study is not benchmarked, and we do

not know whether the EIC criteria picked methods

better than aggregate selection of the DA-N method.

5.4. Projected operational or economic benefits

In production and inventory control, forecasting is

a major determinant of inventory costs, service levels,

scheduling and staffing efficiency, and many other

measures of operational performance (Adshead &

Price, 1987; Fildes & Beard, 1992; Lee, Feller, &

Adam, 1992). In the broader context of supply chains,

forecasting determines the value of information

sharing, a function that reduces costs and improves
delivery performance (Zhao, Xie, & Leung, 2002).

Forecast errors also contribute to the bullwhip effect,

the tendency of orders to increase in variability as one

moves up a supply chain (Chandra & Grabis, 2005;

Dejonckheere, Disney, Lambrecht, & Towill, 2003,

2004; Zhang, 2004). It follows that forecasting

methods in operating systems should be selected on

the basis of benefits, although this has been done in

only a few studies.

The only study of method selection for a manu-

facturing process is by Adshead and Price (1987),

who developed a cost function to select a method for a

producer of industrial fasteners with annual sales of

o4 million. Total costs affected by forecasting

included inventory carrying costs, stock-out costs,

and overtime. Using real data, the authors developed a

detailed simulation model of the plant, including six

manufacturing operations carried out on 33 machines.

They computed costs for a range of parameters in the

N-N method, the double smoothing version of the A-

N method, and Brown’s (1963) quadratic exponential

smoothing, a method that performed very poorly in

empirical studies and thus disappeared from the

literature. Stock-out costs proved difficult to measure,

and the authors were forced to test several assump-

tions in the cost function. Regardless of the assump-

tion, the N-N method was the clear winner.

In a US Navy distribution system with more than

50,000 inventory items, Gardner (1990) compared the

effects of a random walk and the N-N, A-N, and DA-

N methods on the average delay time to fill back-

orders. Delay time was estimated in a simulation

model using 9 years of real daily demand and lead

time history, and the DA-N method proved superior

for any level of inventory investment.

For a distributor of electronics components, Flores,

Olson, and Pearce (1993) compared methods on the

basis of costs due to forecast errors, defined as the

sum of excess inventory costs (above targets) and the

margin on lost sales. The authors used a sample of 967

demand series to compute costs for the N-N method

with fixed and adaptive parameters, the double

smoothing version of the A-N method, and the

median value of historical demand. For items with

margins greater than 10%, the N-N method with a

fixed parameter was best, while the median was best

for items with lower margins. The relative perfor-

mance of the median was surprising, and Flores et al.
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remarked that a broader study might change the

conclusions. Essentially the same cost function as that

of Flores et al. was used in a study by Mahmoud and

Pegels (1990), although this paper is impossible to

evaluate because several smoothing methods were not

defined.

The only other study of method selection using

operational or economic benefits is by Eaves and

Kingsman (2004), discussed in Section 7.2.

5.5. Identification vs. selection

Although state-space models for exponential

smoothing dominate the recent literature, very little

has been done on the identification of such models

from the data as opposed to selection of the best-

fitting model. By identification, we mean data

analysis to detect the appropriate form of seasonality

and trend. The only possibly relevant papers here are

by Koehler and Murphree (1988) and Andrews

(1994). Koehler and Murphree identified and fitted

MSOE state-space models to 60 time series (all those

with a minimum length of 40 observations) from the

111 series in the M1 competition. Their identification

and fitting routine is best described as semi-

automatic, with some human intervention required.

Koehler and Murphree did not attempt to match their

model selections to equivalent exponential smooth-

ing methods. They compared forecast accuracy

(mean and median APEs) to simple exponential

smoothing and ARIMA models identified by an

expert. In general, the identification process was

disappointing; although there were some differences

in subsets of the data, simple exponential smoothing

ranked first in overall accuracy by a significant

margin. For the complete set of 111 series, Andrews

identified and fitted MSOE models (all with expo-

nential smoothing equivalents), again using a semi-

automatic procedure. His results appear to be better

than the Box–Jenkins results, although he did not

give enough details to be sure, and he did not make

comparisons to the exponential smoothing results

reported for the M1 competition.

Rather than attempt to identify a model, we could

attempt to identify the best exponential smoothing

method directly. Chatfield and Yar (1988) call this a

bthoughtfulQ use of exponential smoothing methods

that are usually regarded as automatic. For the Holt–
Winters class, Chatfield and Yar give a common-sense

strategy for identifying the most appropriate method.

This strategy is expanded in Chatfield (1988, 1995,

1997, 2002, 2004), and here we give the strategy in a

nutshell. First, we plot the series and look for trend,

seasonal variation, outliers, and changes in structure

that may be slow or sudden and may indicate that

exponential smoothing is not appropriate in the first

place. We should examine any outliers, consider

making adjustments, and then decide on the form of

the trend and seasonal variation. At this point, we

should also consider the possibility of transforming

the data, either to stabilize the variance or to make the

seasonal effect additive. Next, we fit an appropriate

method, produce forecasts, and check the adequacy of

the method by examining the one-step-ahead forecast

errors, particularly their autocorrelation function. The

findings may lead to a different method or a

modification of the selected method. For a sample

of reasonable size, it would be useful to have results

for this strategy as a validation of the automatic

selection procedures discussed above. It does not

appear that any of the automatic procedures have been

validated in such a manner.
6. Model-fitting

In order to implement an exponential smoothing

method, the user must choose parameters, either

fixed or adaptive, as well as initial values and loss

functions. The user must also decide whether to

normalize the seasonals, a problem considered earlier

in Section 3.3. The research in choosing fixed

parameters, discussed in Section 6.1, is not particu-

larly helpful, and there are several open research

questions. To avoid model-fitting for the N-N

method, we can use adaptive parameters, reviewed

in Section 6.2. Parameter selection is not indepen-

dent of initial values and loss functions, as discussed

in Section 6.3.

6.1. Fixed parameters

There is no longer any excuse for using arbitrary

parameters in exponential smoothing given the

availability of good search algorithms, such as the

Excel Solver. For examples of using the Solver in
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parameter searches, see Bowerman, O’Connell, and

Koehler (2005) and Rasmussen (2004). One caution-

ary note is that the response surface is not necessarily

convex for any exponential smoothing method, as

discussed in Farnum (1992). Thus, it may be

advisable to start any search routine from several

different points to evaluate local minima.

We hope that our search routine comes to rest at a

set of invertible parameters, but this may not happen,

as discussed below. Invertible parameters create a

model that allows each forecast to be written as a

linear combination of all past observations, with the

absolute value of the weight on each observation less

than one, and with recent observations weighted

more heavily than older ones. This definition is

generally accepted, but the words stability and

invertibility are often used interchangeably in the

literature, which can be confusing. One definition of

stability comes from control theory. If we view an

exponential smoothing method as a system of linear

difference equations, a stable system has an impulse

response that decays to zero over time. The stability

region for parameters in control theory is the same as

the invertibility region in time series analysis

(McClain & Thomas, 1973). But from the time

series perspective, stability has another definition

related to stationarity and is not relevant here. For a

detailed comparison of the properties of stability,

stationarity, and invertibility, see Pandit and Wu

(1983). Examples of authors that use stability in the

control theory sense are Chatfield and Yar (1991),

Gardner and McKenzie (1985, 1988, 1989), Lawton

(1998), McClain (1974), McClain and Thomas

(1973), and Sweet (1985).

In the linear non-seasonal methods, the parameters

are always invertible if they are chosen from the usual

[0, 1] interval. The same conclusion holds for

quarterly seasonal methods, but not for monthly

seasonal methods (Sweet, 1985), whose invertibility

regions are complex. For the monthly A-A and A-M

methods, Archibald (1990) and Sweet (1985) give

examples of some apparently reasonable combina-

tions of [0, 1] parameters that are not invertible. Both

authors test A-M parameters using the A-A inverti-

bility region. Non-invertibility usually occurs when

one or more parameters fall near boundaries, or when

trend and/or seasonal parameters are greater than the

level parameter.
For all seasonal exponential smoothing methods,

we can test parameters for invertibility using an

algorithm by Gardner and McKenzie (1989), assum-

ing that additive and multiplicative invertible regions

are identical. However, this test may fail to eliminate

some troublesome parameters. An astonishing finding

in Archibald’s study is that some combinations of [0,

1] parameters near boundaries fall within the ARIMA

invertible region, but the weights on past data diverge.

The result is that some older data are weighted more

heavily than recent data. Archibald found that

diverging weights occur in both standard and state-

space versions of the A-M method. Through trial and

error, Archibald found a more restrictive parameter

region for state-space A-M that seemed to prevent

diverging weights. The lesson from Archibald’s study

is that one should be skeptical of parameters near

boundaries in all seasonal models.

Archibald’s work was extended by Hyndman,

Akram, and Archibald (2005), who give equations

that define an badmissibleQ parameter space for all

additive seasonal methods except the DM methods.

Combinations of parameters that fall within the

admissible space produce truly invertible models.

Although the admissible space is complex for all

methods considered, it is a simple matter to program

the equations as a final check on fitted parameters.

Hyndman; Akram et al. also make a case similar to that

of Archibald and Koehler (2003) (see Section 3.3) for

renormalization of seasonals in state-space models.

For the N-N method, Johnston and Boylan (1994)

stand alone in recommending that a be constrained to

values of 0.50 or less. Their analysis is complex and

they do not reconcile this constraint with the many

examples of time series in which a N0.50 is optimal.

Once the parameters have been selected, another

problem is deciding how frequently they should be

updated. When forecasting from multiple time origins,

Fildes, Hibon, Makridakis, and Meade (1998) com-

pared three options for choosing parameters in the N-

N, A-N, and DA-N methods: (1) arbitrarily, (2)

optimize once at the first time origin, and (3) optimize

each time forecasts are made. These options were

tested in the Fildes collection of 261 telecommunica-

tions series, and the best option was to optimize each

time forecasts were made. It remains to be seen

whether this conclusion applies to series that are not

so well behaved.
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6.2. Adaptive smoothing

The term adaptive smoothing is used to mean

many different things in the literature. Here, we mean

only that the parameters are allowed to change

automatically in a controlled manner as the character-

istics of the time series change. In Gardner (1985), I

concluded that there was no credible evidence in favor

of any of the numerous forms of adaptive smoothing.

See also Armstrong (1984) for a similar conclusion.

Since then, a number of new ideas for adaptive

smoothing have appeared.

The Kalman filter can be used to compute

smoothing parameters. Snyder (1988) developed such

an algorithm for the N-N method, assuming a random

walk with a single source of error. The method is

similar to Gilchrist’s (1976) exact DLS version of the

N-N method in that no initial values or model-fitting

are necessary. Snyder’s method contains a short-run

smoothing parameter that eventually converges to a

long-run parameter. Using the 111 series from the M1

competition, Snyder’s MAPE results were about the

same as the standard single-parameter N-N method in

monthly data, but slightly better in annual and

quarterly data. In Snyder (1993), his filter was

implemented in a system for forecasting auto parts

sales, although problems within the company made it

difficult to assess forecasting performance.

A more elaborate Kalman filtering idea, by

Kirkendall (1992), uses adaptive parameters in four

MSOE state-space models designated as steady,

outlier, level shift, and a mixed model with mean

and variance based on a weighted average of the first

three models. The steady model is the N-N method

and the others are variations. Separate model esti-

mates and separate posterior probabilities are main-

tained for each of the models, and the state transitions

from model to model according to the probabilities.

Kirkendall gives limited empirical results that are not

benchmarked. Similar proposals for adapting to

changes in structural models corresponding to expo-

nential smoothing are available in Jun (1989) and Jun

and Oliver (1985), but again the empirical results are

limited and not benchmarked.

An unpromising scheme for adapting the N-N

method was suggested by Pantazopoulos and Pappis

(1996), who set the parameter equal to the absolute

value of the two-step-ahead forecast error divided by
the one-step-ahead error. The practical consequence is

that the smoothing parameter very frequently exceeds

1.0; when this happens, the authors reset the parameter

to 1.0, thus producing a random-walk forecast.

The only adaptive method that has demonstrated

significant improvement in forecast accuracy com-

pared to the fixed-parameter N-N method is Taylor’s

(2004a, 2004b) smooth transition exponential smooth-

ing (STES). Smooth transition models are differenti-

ated by at least one parameter that is a continuous

function of a transition variable, Vt. The formula for

the adaptive parameter at is actually a logistic

function:

at ¼ 1 1þ exp aþ bVtð Þð Þ ð15Þ

There are several possibilities for Vt, including et, |et|,

and et
2. Whatever the transition variable, the logistic

function restricts at to [0, 1]. The drawback to STES

is that model-fitting is required to estimate a and b;

thereafter, the method adapts to the data through Vt. In

Taylor (2004b), Vt = et
2 was the best choice for

simulated time series with level shifts and outliers as

well as the 1428 M3 monthly series. As benchmarks

for STES, Taylor computed results for numerous other

exponential smoothing methods, with both fixed and

adaptive parameters. STES performed well in the

simulated series, as expected. In the many re-

examinations of the M3 series, Taylor is the only

researcher who followed the advice of Fildes (1992)

and Fildes et al. (1998) and evaluated forecast

performance across time. Using the last 18 observa-

tions of each series, Taylor computed successive one-

step-ahead monthly forecasts, for a total of 25,704

forecasts. Judged by MAPE and median APE, STES

was the most accurate method tested, significantly so

for the MAPE. Additional empirical evidence is given

in Taylor (2004a), a study in which STES was

arguably the best method overall in volatility fore-

casting of stock index data compared to the fixed-

parameter version of N-N and a range of GARCH and

autoregressive models.

Only a few authors have proposed adapting the

parameters in the trend methods. In the A-A method,

Williams (1987) contends that only the level param-

eter should be adapted. Mentzer (1988) and Mentzer

and Gomes (1994) agree with Williams and recom-

mend setting the level parameter in the A-A method
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equal to the absolute percentage error in the current

period (if the error exceeds 100%, the level parameter

is set equal to 1.0). Mentzer and Gomes present results

for the M1 data that are the best of all methods

reported to date. But in the M3 data, Taylor (2004b)

found that the Mentzer and Gomes version of the A-A

method was certainly the worst exponential smooth-

ing method tested, regardless of the error measure or

whether the parameters were fixed or adaptive. There

seems to be no explanation for this contradiction in

performance.

6.3. Initial values and loss functions

Standard exponential smoothing methods are

usually fitted in two steps, by choosing fixed initial

values (see Gardner, 1985, for a review of the

alternatives), followed by an independent search for

parameters. In contrast, the new state-space methods

are usually fitted using maximum likelihood, a

procedure that makes the choice of initial values less

of a concern because they are refined simultaneously

with the smoothing parameters during the optimiza-

tion process. Unfortunately, maximum likelihood may

require significant computation times, as discussed in

Hyndman et al. (2002). For example, in monthly

seasonal models with a damped trend, there are 13

initial values and 4 parameters, so the optimization is

done in 17-dimensional space.

Another maximum likelihood procedure differing

in many details from Hyndman et al. is found in

Broze and Mélard (1990), who give meticulous

instructions for fitting all of the linear exponential

smoothing methods in Table 1. The Broze and Melard

procedure is difficult to evaluate because they give no

empirical results or computation times. An alternative

to maximum likelihood is Segura and Vercher’s

(2001) nonlinear programming model that optimizes

initial values and parameters simultaneously, but

again the authors are silent about empirical results

and computation times.

In an exhaustive re-examination of the M1 series,

Makridakis and Hibon (1991) measured the effect of

different initial values and loss functions in fitting the

N-N, A-N, and DA-N methods, using seasonally

adjusted data where appropriate. Initial values were

computed by least squares, backcasting, and several

simple methods such as setting all initial values to zero.
Loss functions included the MAD, MAPE, median

APE,MSE, the sum of the cubed errors, and a variety of

non-symmetric functions. There was little difference in

average post-sample accuracy regardless of initial

values or loss function. Furthermore, sample size or

type of data (annual, quarterly, or monthly) did not

make any consistent difference in the best choice of

initial values or loss function. The authors repeated the

study in the Fildes telecommunications data with much

the same findings.

The major conclusion from the Makridakis and

Hibon study is that the common practice of initializing

by least squares, choosing parameters from the [0, 1]

interval, and fitting methods to minimize the MSE

provides satisfactory results. The authors caution that

this conclusion applies to automatic forecasting of large

numbers of time series and may not hold for individual

series, especially those containing significant outliers.

To cope with outliers, I argue for a MAD loss function

(Gardner, 1999). However, I point out that there are

exceptions, making it advisable to evaluate both MSE

and MAD loss functions in many series.
7. Forecasting for inventory control

In inventory control with non-intermittent de-

mand, exponential smoothing methods are the same

as in other applications, but variance estimates are

considerably different. Variances of cumulative de-

mand over the complete reorder lead time are

required, as discussed in Section 7.1. If demand is

intermittent, we need both specialized smoothing

methods and variance estimates, as discussed in

Section 7.2. Our discussion is concerned only with

these topics, and the vast literature on inventory

decision rules constructed from forecasting systems is

beyond our scope.

7.1. Non-intermittent demand

For the N-N method, what might be called the

traditional estimate of the standard deviation of total

lead time demand is s
ffiffiffiffi
m
p

, where s is the one-step-

ahead standard deviation and m is the lead time

(Brown, 1959, 1967). This estimate has been persistent

in the literature, but it is biased. The correct multiplier

for the standard deviation was derived using an MSOE
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state-spacemodel by Johnston andHarrison (1986) and

an SSOE model by Snyder et al. (1999):

f a;mð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ a m� 1ð Þm 1þ a 2m� 1ð Þ=6ð Þð Þ

p
ð16Þ

The effect of this multiplier is significant for any value

of a at any lead time greater than one period. For

example, with a =0.2 and a lead time of two periods,

the correct standard deviation is more than twice the

size of the traditional estimate.

For the linear methods A-N, DA-N, A-A, and DA-

A, Snyder et al. (2004) used SSOE models to develop

variance expressions for cumulative lead-time demand,

assuming both additive and multiplicative errors.

Snyder et al. (2004) can be viewed as a companion

paper to Hyndman, Koehler, et al. (2005), which

contains prediction intervals around point forecasts

for the same methods and several others. For those who

prefer MSOE models, some limited and far more

complex variance results are available in Harvey and

Snyder (1990). It is important to understand how the

error assumptions in the SSOE models affect the

distribution of cumulative lead-time demand. If the

errors are additive and normal, cumulative lead-time

demand will of course be normal. If the errors are

normal and multiplicative, cumulative lead-time

demand will not be normal, although Hyndman,

Koehler, et al. (2005) suggest that the normal

distribution is a safe approximation. For the smooth-

ing methods without analytical variance expressions,

there are many bootstrapping procedures in the

literature that can be used to develop empirical

variance estimates. The parametric bootstrapping

procedure of Snyder (2002) and Snyder et al.

(2002) should appeal to the practical forecaster

because it is tailored to lead-time demand and can

be used when the distribution of demand is non-

normal, when the lead time is stochastic, and when

demand is intermittent.

Snyder et al. (2002) used the parametric bootstrap

to study an important practical question about state-

space modeling: Do the assumptions of additive and

multiplicative errors make any difference in estimat-

ing variances? The authors used multiplicative errors

in generating data with no trend or seasonal pattern,

and then fitted both additive- and multiplicative-error

versions of the N-N method. This research design
should have produced results substantially in favor of

the multiplicative-error version, but it did not. Differ-

ences in simulated fill rates and order-up-to levels

between the two N-N versions were very small except

when a major step change in the series occurred.

When data with trends and seasonality were simulat-

ed, the multiplicative-error N-N method did better, but

this finding is misleading because the method was not

appropriate for the data.

Stockouts are not treated in the research discussed

above, although the parametric bootstrap could easily

be adapted to do so. Stockouts truncate the distribution

of demand, causing systematic bias in estimates of the

mean and variance. To correct for such bias in the N-N

method, Bell (1978) replaced Xt with the conditional

mean of the demand distribution for periods that

include stockouts. The conditional mean is defined as

the expected value of demand, given that observed

demand is greater than or equal to the quantity actually

available for sale. Demand is assumed normal, with

variance estimated by the smoothed MAD. The

normality assumption may seem doubtful, but Bell

(1978, 2000) and Artto and Plykkänen (1999) argue

that product stocking methods based on the normal

distribution work well in practice. Through simulation,

Bell (1981, 2000) found that his procedure works well

so long as the number of stockouts does not exceed

50%. For larger numbers of stockouts, Bell (2000)

gives adjustments to his procedure.

7.2. Intermittent demand

If time series of inventory demands are observed

intermittently, we cannot recommend the N-N method

because the forecasts are biased low just before a

demand occurs and biased high just afterward,

resulting in excessive stock levels. The standard

method of forecasting intermittent series was devel-

oped by Croston (1972) and works as follows. Using

the N-N method, we smooth two components of the

time series separately, the observed value of nonzero

demand (Dt) and the inter-arrival time of transactions

(Qt). The smoothed estimates are denoted Zt and Pt,

respectively, and their recurrence equations are

Zt ¼ aDt þ 1� að ÞZt�1 ð17Þ

Pt ¼ aQt þ 1� að ÞPt�1 ð18Þ
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The value of a is the same in both equations. The

expected value of demand per unit time (Yt) is then

E Ytð Þ ¼ Zt=Pt ð19Þ

If there is no demand in a period, Zt and Pt are

unchanged. When demand occurs every period, the

Croston method gives the same forecasts as the

conventional N-N method.

Syntetos and Boylan (2001) showed that E(Yt) is

biased high and derived a corrected version of Eq.

(19), although this version is not mentioned in later

research by Syntetos and Boylan (2005) and Syntetos,

Boylan, and Croston (2005). Instead, the later papers

give a different corrected version of Eq. (19):

E Ytð Þ ¼ 1� a=2ð Þ Zt=Ptð Þ: ð20Þ

The modified Croston forecasting system defined

by Eqs. (17), (18), and (20) was used in Eaves and

Kingman (2004), who tested the system using a

sample of 11,203 repair parts from Royal Air Force

inventories. The results varied somewhat depending

on the degree of aggregation of the data (weekly,

monthly, quarterly) and the type of demand pattern

(ranging from smooth to highly intermittent). How-

ever, in general, the modified Croston method was

more accurate than the original, and both methods

performed significantly better than the N-N method.

To compute safety stocks, Eaves and Kingman relied

on a variance expression developed by Sani and

Kingsman (1997) (discussed below). The authors

extrapolated the sample savings to the entire inven-

tory, with convincing results. The conventional N-N

method produced an additional 13.6% in inventory

investment (o285 million) over the modified Croston

method.

Another idea to correct for bias in the Croston

method is given in Levén and Segerstedt (2004).

Rather than smooth size and inter-arrival time

separately as in Eqs. (17) and (18), the authors

proposed a method that can be shown to be equivalent

to smoothing both components in the same equation.

The authors give no explanation of how this idea

corrects for bias.

Snyder (2002) took a state-space approach to the

study of Croston’s method. The underlying model

assumes that nonzero demands are generated by an

ARIMA (0, 1, 1) process, while the inter-arrival times

follow the Geometric distribution. The latter assump-
tion means that the probability of demand occurrence

is constant (one of Croston’s stated assumptions), or

equivalently that the mean inter-arrival time of the

demand series is constant. Therefore, Eq. (18) is not

used, and P in Eq. (19) has no time subscript. This

model can generate negative values, so an alternative

model using the logarithms of nonzero demands was

specified. Variance estimates for the models were

developed using a parametric bootstrap from the

normal distribution. Snyder gives encouraging results

for his models for a few time series, but more

evidence is needed to support a constant mean inter-

arrival time. This idea is contrary to the philosophy of

exponential smoothing, a problem acknowledged by

Snyder.

Further analysis of Snyder’s models is given in

Shenstone and Hyndman (2005), who developed

analytical prediction intervals for them. Shenstone

and Hyndman also found that there is no underlying

stochastic model for Croston’s method or the two

variants proposed by Syntetos and Boylan (2001,

2005). Any models that might be considered as

candidates simply do not match the properties of

intermittent data. Thus, if we wish to have analytical

prediction intervals for intermittent data, the only

option is to adopt one of Snyder’s models.

Moreover, Shenstone and Hyndman’s work creates

doubts about the assumptions behind the variance

expressions for Croston’s method found in the

literature, including Croston (1972) as corrected by

Rao (1973), Johnston and Boylan (1996a), Sani and

Kingsman (1997), and Schultz (1987). All of these

variance expressions must be regarded as approxima-

tions, although they have generally worked well in

empirical studies. The best approximation for the

variance of mean demand may be that of Sani and

Kingsman:

Var Ytð Þ ¼ max Var Ztð Þ=Pt; 1:1Zt=Pt½ � ð21Þ

The second term on the right-hand side looks peculiar,

but the purpose is to make certain that the variance is

larger than the mean, a relationship required by the

assumption that demands are generated by the

negative binomial distribution. The variance of Zt is

estimated by the smoothed MAD, assuming normality

and using the same a as in Eqs. (17) and (18). In an

empirical study of forecasting the demand for repair

parts, Sani and Kingsman showed that Eq. (21) gave
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much better service level performance than Croston’s

original variance expression.

When should we use Croston’s method or one of

its variants? Johnston and Boylan (1996a, 1996b)

found that Croston’s method is superior to the N-N

method when the average inter-arrival time is greater

than 1.25 times the interval between updates of the N-

N method. This finding was thoroughly substantiated

by simulating different inter-demand intervals and

patterns, different distributions of order size, different

forecast horizons, and different parameters in the

smoothing methods.

Syntetos et al. (2005) extended Johnston and

Boylan’s work by developing rules based on the

variability of order size and inter-arrival times for

selecting from three methods: N-N, original Croston,

and modified Croston in Eqs. (17), (18), and (20).

Problems arise in any attempt to generalize from

Syntetos et al. because method selection based on

variability of order size contradicts Johnston and

Boylan (1996a, 1996b), who found that this statistic

had almost no effect on the relative performance of

methods. Syntetos et al. (2005) also appears to

contradict Syntetos and Boylan (2005); in Syntetos

et al., the original Croston method was consistently

better than the N-N method, but this was not true in

Syntetos and Boylan.
8. Empirical studies

Table 3 is a guide to all papers published since

1985 that present empirical results for exponential

smoothing, excluding the M-competitions, the many

re-examinations of the M-competitions, papers based

entirely on simulated time series, and several papers

that are impossible to evaluate. This last category

includes Shoesmith and Pinder (2001), who did not

disclose the particular smoothing methods used.

Mahmoud and Pegels (1990) and Snyder (1993) were

also omitted for reasons explained in Sections 5.4 and

6.2, respectively.

Several generalizations can be made about the 65

papers listed in Table 3. Seasonal methods were rarely

used, even though most studies were based on

seasonal data. It may be surprising that there have

been no reported applications of the N-A or N-M

methods, and only three applications of the A-A
method, the subject of a large body of theoretical

research. It may also be surprising that there have

been few applications of the damped-trend methods.

In most cases, little attention was given to method

selection, a generalization substantiated by the large

number of studies with only one method listed.

How often was exponential smoothing successful

in these studies? Forecast performance was sometimes

difficult to evaluate because many of the studies were

not designed to be comparative in nature. However,

my interpretation is that there are only seven studies

that did not report reasonable forecast accuracy with

exponential smoothing, and all of these can be

explained. In Holmes’ (1986) analysis of leading

indicator series characterized by dramatic turning

points, it is unsurprising that transfer function models

performed better than the A-N method. In forecasting

IBM product sales (Wu, Ravishanker, & Hosking,

1991), several Box–Jenkins models defeated the A-M

method. The data suggest that the damped trend

methods would have performed better, but the authors

did not consider them.

In forecasting point-of-sale scanner data (Curry,

Divakar, Mathur, & Whiteman, 1995), the univariate

N-N method was applied to a multivariate problem

with predictably poor results. Fildes, Randall, and

Stubbs (1997) developed models for short-term

forecasting of water and gas demand and found that

complex multivariate methods (beyond the capability

of the exponential smoothing methodology) were

necessary to capture all the influences on the data.

In Fildes et al. (1998), the telecommunications data

contained little structure except consistent negative

trends, making the robust trend method the best

choice. In Bianchi, Jarrett, and Hanumara’s (1998)

study of incoming calls to telemarketing centers, the

A-A and A-M methods did not perform as well as

ARIMA modeling with interventions that were

essential in the data.

The last study in which exponential smoothing did

not perform well is by Willemain, Smart, and Schwarz

(2004), who claimed that their patented bootstrap

method made significant improvements in forecast

accuracy over the N-N and Croston methods. How-

ever, as discussed in Gardner and Koehler (2005),

Willemain et al. was published with mistakes and

omissions that bias the results in favor of the patented

method.



Table 3

Empirical studies

Data Methods Reference

Airline passengers DA-A Grubb and Mason (2001)

Ambulance demand calls A-M Baker and Fitzpatrick (1986)

Australian football margins of victory N-N Clarke (1993)

Auto parts N-N Gardner and Diaz-Saiz (2002)

Auto parts N-N, Croston Snyder (2002)

Auto parts N-N, Croston Syntetos and Boylan (2005)

Auto parts N-N, Croston Syntetos et al. (2005)

Call volumes to telemarketing centers A-A, A-M Bianchi et al. (1998)

Chemical products N-N, Croston Garcı́a-Flores et al. (2003)

Computer network services N-N Masuda and Whang (1999)

Computer parts DA-N Gardner (1993)

Confectionery equipment repair parts N-N, Croston Strijbosch et al. (2000)

Consumer product sales (annual) N-N, A-N, DA-N Schnaars (1986)

Consumer food products N-N Koehler (1985)

Cookware sales DA-N Gardner and Anderson (1997)

Cookware sales DA-N Gardner, Anderson-Fletcher, and Wicks (2001)

Crime rates N-N, A-N Gorr, Olligschlaeger, and Thompson (2003)

Currency exchange rates N-N, A-N, A-M Dheeriya and Raj (2000)

Department store sales N-N, A-N Geurts and Kelly (1986)

Economic data (various) N-N, A-N Geriner and Ord (1991)

Economic, environmental data (various) A-N Wright (1986b)

Electric utility loads A-N Huss (1985a)

Electric utility sales A-N Huss (1985b)

Electricity demand N-N, A-N Price and Sharp (1986)

Electricity demand A-M Taylor (2003b)

Electricity demand forecast errors N-N Ramanathan, Engle, Granger, Vahid-Araghi, and Brace (1997)

Electricity supply A-N Sharp and Price (1990)

Electrical service requests A-M Weintraub, Aboud, Fernandez, Laporte, and Ramirez (1999)

Electronics components N-N, A-N Flores et al. (1993)

Exports N-N Mahmoud, Motwani, and Rice (1990)

Financial futures prices N-N Sharda and Musser (1986)

Financial returns N-N Taylor (2004a)

Food product demand N-N Fairfield and Kingsman (1993)

Food product demand N-N Mercer and Tao (1996)

Hospital patient movements A-M Lin (1989)

Hotel revenue data N-N, A-N Weatherford and Kimes (2003)

IBM product sales A-M Wu et al. (1991)

Industrial data (various) N-N, Croston Willemain, Smart, Shockor, and DeSautels (1994) and

Willemain et al. (2004)

Industrial fasteners N-N, A-N Adshead and Price (1987)

Industrial production differences N-N Öller (1986)

Industrial production index A-A Bodo and Signorini (1987)

Leading indicators A-N Holmes (1986)

Macroeconomic variables A-M Thury (1985)

Mail order sales N-N Chambers and Eglese (1988)

Mail volumes A-M Thomas (1993)

Manpower retention rates A-N Chu and Lin (1994)

Medicaid expenses A-N Williams and Miller (1999)

Medical supplies A-N Mathews and Diamantopoulos (1994)

Natural gas demand N-N, A-N, A-M Lee et al. (1993)

Stock index direction N-N Leung, Daouk, and Chen (2000)

Supermarket product sales Many Taylor (2004c)

Point-of-sale scanner data N-N Curry et al. (1995)
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Printed banking forms N-N, A-N Chan, Kingsman, and Wong (1999)

Process industry sales DA-M Miller and Liberatore (1993)

Royal Air Force spare parts N-N, Croston Eaves and Kingsman (2004)

Telephone service times N-N Samuelson (1999)

Telecommunications demand N-N, A-N, DA-N Fildes et al. (1998)

Tourism A-A Pfeffermann and Allon (1989)

Tourism A-N Martin and Witt (1989)

Travel speeds in road networks N-N Hill and Benton (1992)

Truck sales A-M Heuts and Bronckers (1988)

US Navy inventory demands N-N, A-N, DA-N Gardner (1990)

Utility demand (water and gas) A-M, N-A, N-M Fildes et al. (1997)

Vehicle/agricultural machinery parts N-N, Croston Sani and Kingsman (1997)

Water quality, divorce rates A-N Wright (1986b)

Table 3 (continued)
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How often was Croston’s method successful?

There are five pertinent studies in Table 3 (Eaves &

Kingsman, 2004; Garcı́a-Flores, Wang, & Burgess,

2003; Sani & Kingsman, 1997; Snyder, 2002;

Strijbosch, Heuts, & van der Schoot, 2000). In all of

these, Croston’s method or one of its variants gave

reasonable performance, although it is difficult to be

more specific because the degree of success depended

on the type of data and the error measure used.
9. The state of the art

Exponential smoothing methods can be justified in

part through equivalent kernel regression and ARIMA

models, and in their entirety through the new class of

SSOE state-space models, which have many theoret-

ical advantages, most notably the ability to make the

forecast errors dependent on the other components of

the time series. This kind of multiplicative error

structure is not possible with the ARIMA class,

making exponential smoothing a much broader class

of models, and neatly reversing the bspecial caseQ
argument discussed in Gardner (1985).

The problem now is to determine whether the SSOE

modeling framework has practical as well as theoretical

advantages. This has yet to be demonstrated. In the M1

data, aggregate selection of the damped additive trend

was a better choice than individual selection of SSOE

models through information criteria. The same conclu-

sion holds for annual and quarterly M3 data. For

monthlyM3 data, individual selection of SSOEmodels

was superior only at short horizons. At longer horizons
and overall, there was little to choose between damped

additive and multiplicative trends and the SSOE

models. I cannot explain these results, and they cannot

be ignored if there is to be any hope of practical

implementation.

A number of possibilities might be explored to

improve the performance of the SSOE models. First,

damping should be considered with both additive and

multiplicative trends. Not all of the 24 models in the

SSOE framework can be expected to be robust, so the

range of candidates might be reduced. The use of

information criteria for model selection should be re-

examined. In Hyndman (2001), the AIC often failed

to select an ARIMA (0, 1, 1) model even when the

data were generated by an ARIMA (0, 1, 1) process. It

seems unreasonable to believe that the AIC should do

any better in selection from the SSOE framework, and

other selection procedures should be considered. We

note that other information criteria were used in Billah

et al. (2005), but this study is unhelpful because the

results are not benchmarked.

Most researchers have avoided the problem of

method selection in exponential smoothing, and there

is as yet no evidence that individual selection can

improve forecast accuracy over aggregate selection of

one of the damped trend methods. However, Shah’s

(1997) discriminant analysis procedure and Meade’s

(2000) regression-based performance index are prom-

ising alternatives for individual method selection and

deserve empirical research using an exponential

smoothing framework.

From the practitioner’s viewpoint, the aim in

method selection must be robustness, especially in
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large forecasting systems. Several new methods have

demonstrated robustness: Taylor’s (2003a) damped

multiplicative trends, Taylor’s (2004a, 2004b) adap-

tive version of simple smoothing, and the Theta

method of Assimakopoulos and Nikolopoulos (2000),

shown to be equivalent to the N-N method with drift

by Hyndman and Billah (2003). All of these methods

deserve more research to determine when they should

be preferred over competing methods.

There are a number of other opportunities for

empirical research in exponential smoothing. The

SSOE models yield analytical variance expressions

for point forecasts that have eluded researchers for

many years. Surely these expressions are better than

the variance expressions used in the past, but they

have not been evaluated with real data. Perhaps this

could be done in something like an M-competition for

prediction intervals. Such a competition should also

test the SSOE variance expressions for cumulative

forecasts at different lead times. In forecasting

intermittent demand, we have several new versions

of Croston’s method that require further testing with

real data. Another idea that merits empirical research

is Fildes et al.’s (1998) recommendation that param-

eters be re-optimized each time forecasts are made.

Since Winters (1960) appeared, there has been

confusion in the literature about whether and how

seasonals should be renormalized in the Holt–Winters

methods. Today, it seems foolish not to renormalize

using the efficient Archibald and Koehler (2003)

system, a major practical advance that resolves

conflicting results and puts the renormalization

equations in a common form. In the additive seasonal

methods, it is not necessary to renormalize the

seasonal indices if forecast accuracy is the only

concern, but this is rarely the case in practice when

repetitive forecasts are made over time. Forecasting

methods require regular maintenance, a job that is

easier to accomplish when the method components

can be interpreted without bias. With multiplicative

seasonality, we do not know if renormalization can be

safely ignored, so certainly we should use the

Archibald-Koehler system.

In fitting additive seasonal models, it is alarming

that some combinations of [0, 1] parameters fall

within the ARIMA invertible region, yet the weights

on past data diverge. This problem can be avoided by

checking the weights using the Hyndman, Akram et
al. (2005) boundary equations. In fitting multiplica-

tive seasonal models, there is little guidance on

parameter choice. Research is also needed on param-

eter choice for the new damped multiplicative trend

methods.

My experience is that practitioners happily ignore

most of the problems discussed in this paper. In the

future, we must validate the substantial body of theory

in exponential smoothing and communicate it to

practitioners. Writing of exponential smoothing vs.

the Box–Jenkins methodology, I concluded Gardner

(1985) with the following opinion: bThe challenge for
future research is to establish some basis for choosing

among these and other approaches to time series

forecasting.Q This conclusion still holds, although we

have many more alternatives today.
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