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Abstract 

This paper is an applied study in forecasting the failure of component parts in computer systems to 
aid in production planning and inventory control. The aim is to develop a reasonably simple forecasting 
system that can be operated by managers rather than statisticians. Monthly failures of components are 
shown to be related to cumulative shipments from the factory after a time lag of several months. This 
relationship is modelled using discounted-least-squares regression, a methodology that appears to be 
rare in practice. Simulated forecast accuracy is then compared with two alternatives, exponential 
smoothing and a combination of regression and smoothing forecasts. Discounted regression proves to 
be the most accurate and is therefore implemented. 
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1. Introduction 

The setting for this study is a small manufac- 
turing company in the computer industry. The 
company supplies a variety of component parts, 
such as disk drives and controllers to customers 
who assemble or enhance computer systems for 
end users. These customers include computer 
dealers and manufacturers, corporations, and 
some large government agencies. Routine sales 
forecasting is a minor problem not considered 
here because most production is based on con- 
tracts placed well in advance. However, forecast- 
ing the number of components that will fail once 
they are installed and put into service and the 
timing of these failures are important problems. 
To maintain its competitive position, the com- 
pany must stand ready to replace all failed com- 
ponents, usually on very short notice. 

* Tel: (713) 743-4720; fax: (713) 743-4807. 

The forecasting model proposed for this appli- 
cation is a discounted-least-squares (DLS) re- 
gression to predict monthly component failures 
as a function of cumulative shipments over time. 
To benchmark forecast accuracy, comparisons 
are made between two alternatives: (1) exponen- 
tial smoothing, perhaps the most reasonable al- 
ternative model of the data; and (2) a combina- 
tion of forecasts from regression and exponential 
smoothing. 

In this paper, Section 2 examines the com- 
pany’s production and component failure data. 
Section 3 discusses the considerations involved in 
model selection. In Section 4, the results 
of forecasting tests are presented. Forecast 
monitoring problems are discussed in Section 5. 
Finally, conclusions and implementation of 
the forecasting system are discussed in Section 
6. This research can be replicated. Copies of all 
data in disguised form are available from the 
author. 
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2. Data analysis 

The company provided monthly time series 
production and failure data for nine components. 
Five components were selected for analysis, with 
time series of the following lengths: 24, 27, 29, 
37, and 48 months, respectively. The compo- 
nents are identified simply by the letters A-E. 
An agreement between the author and the com- 
pany prohibits disclosure of information on the 
nature of the components. One component was 
eliminated from the study because the data were 
absurdly ill-behaved, containing numerous jump- 
shifts up and down in the level of failures due to 
manufacturing problems. Management agreed to 
treat this component as a special case, for which 
judgmental forecasting was necessary. Three 
other components were not analyzed because 
they had been in production for periods ranging 
from 6 to 13 months. 

At the beginning of the study, management 
hoped that monthly shipments of components 
would be of some assistance in predicting month- 
ly failures several months later. Unfortunately, 
correlation analysis showed that this idea was not 
feasible. To illustrate, Fig. 1 plots monthly fail- 
ures in period t versus monthly shipments in 
period t - 3 for component C. There is no signifi- 
cant relationship when using this lag structure, 
and the same was true for all other components 
and lag structures. 

However, a strong relationship was found be- 
tween monthly failures and cumulative shipments 

of components. This relationship makes some 
sense because samples showed that the failed 
components in a given month could be traced to 
a wide range of previous production dates. In 
Fig. 2, monthly failures in period t are plotted 
versus cumulative shipments through period t - 3 
for component C. The correlation coefficient 
between these variables is 0.92. For each of the 
other components, a coefficient of at least 0.90 
was found using the same variables. 

Figure 2 suggests the use of some form of 
regression model to predict monthly failures, 
using cumulative shipments as the independent 
variable. A time series model is also a possibility 
for this data. Figure 3 shows a time series plot of 
monthly failures for component C. The pattern 
in this graph is typical of components A-D. 
Each time series in this group contains a definite 
trend with a large random component and no 
evidence of any change in structure. However, as 
shown in Fig. 4, the data for component E (48 
observations) does display a marked change in 
structure. Production slowed during the third 
year, and finally ceased in month 42. Growth in 
monthly failures disappeared during the third 
year, while later data fluctuate around a constant 
level. Based on experience of the industry, man- 
agement believed that the constant-level struc- 
ture would continue for some time, followed by 
a gradual decline in failures as the computers in 
which the component was installed became obso- 
lete. Management also expected the other com- 
ponents to eventually behave like this. 

Fig. 1. Component C. Monthly failures in period t versus monthly shipments in period t - 3 
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Although the time series are too short for a 
conclusive statistical analysis, no evidence of a 
seasonal pattern was found in any of them. 
Management also did not believe that there was 
any reason to expect a seasonal pattern. 

3. Model development 

One approach to modelling component fail- 
ures relies on an engineering estimate of the 
mean-time-between-failures (MTBF) for a com- 
ponent. Given the probability law followed by 
the MTBF or some function of the MTBF, pre- 
dictions of failure rates can be made for any time 
period. However, management ruled out any 
attempt to develop a model using MTBF esti- 
mates. A previous consultant had attempted 
such a model, but management found the predic- 
tions to be useless. The problem was that the 
true MTBF changes continuously, as design, 
manufacturing, and quality control improve with 
experience. Thus replacement parts often have 
different failure characteristics than the originals. 
A related problem was that company engineers 
found it difficult to quantify failure characteris- 
tics, given the extremely complex interactions 
between the components and the variety of hard- 
ware and software configurations in which they 
are employed. 

The correlation results suggest a regression 
approach, at least while a component is in pro- 
duction, with cumulative shipments as an ex- 
planatory variable for monthly failures several 
months later. A time lag of 3 months between 
cumulative shipments and failure was selected in 
the regression. There was no need to consider 
shorter time lags, because historical data showed 
that at least 3 months elapse between shipments 
and initial failure reports. Time lags longer than 
3 months served only to reduce the excellent 
correlation coefficients discussed above. It is im- 
portant to emphasize that there is no need to 
forecast more than one step ahead in this appli- 
cation. The regression makes each prediction 
using cumulative shipments data recorded 3 
months earlier. Thus, a one-step-ahead forecast 
gives the company a total of 4 months of lead- 
time to adjust production plans. 

There is justification for a DLS regression 
rather than the usual ordinary-least-squares 

model. It is reasonable to believe that time to 
failure of components is exponential, so the 
number of failures depends directly on the num- 
ber of components in use (cumulative shipments) 
and the total failure rate. The latter is unlikely to 
be a constant, the assumption made in an ordi- 
nary-least-squares model. Instead, the total fail- 
ure rate should decrease over time, making DLS 
regression more appropriate for tracking 
changes. 

By following the recursive updating scheme in 
Gilchrist (1976)) the DLS regression was easy to 
program in a spreadsheet. All personnel in- 
volved in production planning were familiar with 
spreadsheets, which simplified implementation of 
the model. Managers and production planners 
were able to answer many of their own questions 
about DLS by tracing the spreadsheet formulas 
and performing sensitivity analysis on model pa- 
rameters. 

An alternative forecasting model is needed to 
benchmark accuracy. Given the short time series 
available, some form of exponential smoothing 
appears to be the only practical alternative. For 
reasons explained below, the damped-trend 
smoothing model of Gardner and McKenzie 
(1985) was selected. This model is written: 

S, = S,_, + +T,_, + hle, 

T, = +T,_, + h,e, 

m 

(I) 

(2) 

&t(m) = S, + c &T, . 
i=l 

(3) 

S is the local level of the series, T is the local 
trend estimate, and X is the forecast, made at 
origin t for m steps ahead. The smoothing pa- 
rameters are h, and h,, chosen independently. 
The trend estimate is modified with an autoreg- 
ressive-damping parameter, 4. Although the 
model is stable over a wide range of parameters, 
all three parameters are usually constrained to 
the range O-l. 

The reason for selecting this model is that it 
includes several special cases which often lead to 
greater forecast accuracy than when the usual 
assumption of a linear trend in every time series 
is made. For example, when the trend is erratic, 
model-fitting yields 0 < 4 < 1, so that growth in 
the forecasts is damped. In series with stronger 
trends, model-fitting yields $J = 1, and the fore- 
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casts are identical to those from Holt’s linear 
trend model. For examples of these results with 
empirical data, see Gardner and McKenzie 
(1985). 

Another alternative is to combine the fore- 
casts from the DLS and smoothing models. A 
simple average of forecasts was used, because 
Clemen’s (1989) review concludes that there is 
little evidence in favor of more sophisticated 
methods of combining forecasts. See also the 
arguments by Armstrong (1989) and Makridakis 
(1989) on this point. Another reason for using a 
simple average is that the time series are proba- 
bly too short to support the analysis required by 
more sophisticated methods. 

4. Forecasting tests 

Forecast accuracy results for both mean-abso- 
lute-percentage-error (MAPE) and root-mean- 

Table 1 

Forecast accuracy comparisons 

squared-error (RMSE) criteria are summarized 
in Table 1. RMSE rather than MSE was com- 
puted because the RMSE approximates the stan- 
dard deviation of the forecast errors, an im- 
portant measure for inventory control of the 
components. 

Series E will be used to explain how Table 1 
was developed. First, the DLS and smoothing 
models were fitted to months 1-12. The smooth- 
ing model was initialized by fitting an ordinary- 
least-squares trend to the data for months 1-12, 
using time as the independent variable. The 
initial trend was set equal to the slope, with the 
initial level set equal to the intercept. Following 
the fit, model parameters were retained, and 
forecasts and errors were computed during 
months 13-48. The forecast periods refer to the 
months during which a one-step-ahead forecast- 
ing simulation was conducted. At the end of 
each month during the forecast periods, the DLS 
and smoothing forecasts were averaged to obtain 

Series 

A 

B 

C 

D 

E 

Forecast 
periods 

13-24 

17-24 
21-24 
13-27 
17-27 
21-27 
25-27 
13-29 

17-29 
21-29 

25-29 
29 
13-37 

17-37 
21-37 
25-37 
29-37 
33-37 
37 
13-48 

17-48 
21-48 
25-48 
29-49 
33-48 
37-48 
41-48 
45-48 

MAPE 

Regression 

1.6 

6.1 
5.3 
9.8 
9.0 
9.3 
7.1 
6.1 

6.0 
6.6 

6.7 
5.3 
9.9 

8.5 
7.6 
6.2 
5.1 
6.5 
3.8 
6.4 

5.3 
5.4 
5.2 
5.2 
4.6 
4.2 
3.1 
3.1 

Smoothing Combined 

11.9 9.0 

11.0 7.6 
6.4 5.8 

10.4 10.1 

10.2 9.6 
12.0 10.6 

14.7 11.2 
8.3 5.8 
7.1 6.4 
7.6 7.0 

9.1 7.9 
12.1 8.7 
10.0 9.8 
10.9 9.3 
11.0 8.8 
10.7 7.8 

5.5 5.0 
6.7 6.6 
2.7 3.3 
7.9 6.8 
8.3 6.0 
6.0 5.6 
6.6 5.7 
5.3 5.1 
6.1 5.3 
5.7 4.9 
3.6 3.4 
4.3 3.7 

RMSE 

Regression 

26.0 
22.7 
23.0 
64.5 
66.3 
67.4 
55.6 
23.4 
24.3 
27.5 
27.2 
18.5 
17.5 
17.1 
15.9 
13.0 
11.8 
14.1 

8.0 
49.7 
48.3 
50.9 
53.0 
54.1 
50.5 
47.4 
30.8 
26.3 

Smoothing Combined 

43.4 32.8 
45.3 32.2 
23.3 22.7 

65.0 64.1 
64.2 64.7 
72.5 68.9 
84.8 68.2 
29.5 22.9 
26.5 24.4 
30.2 27.7 
34.7 30.0 
43.2 30.8 

16.2 16.6 
19.7 17.5 
18.9 16.0 
18.9 14.2 
11.5 11.1 

14.6 14.2 
5.7 6.9 

64.8 54.2 
70.6 54.4 

59.1 53.0 
64.7 56.4 
57.9 54.0 
65.9 57.3 
65.7 55.8 
35.7 33.2 
37.3 31.9 
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a combined forecast. In order to evaluate the 
stability of forecast performance over time, the 
number of fit periods was incremented by four 
throughout each series. Again, in series E, each 
model was refitted at the end of months 12, 16, 
20, 24, and so on. There were a total of 28 
refittings for the five time series. Alternative 
increments in the number of fit periods of three 
and six were also tested, but made no significant 
difference to the results. To simplify the DLS 
model, the search for the discount factor was 
constrained to four possibilities: 0.7, 0.8, 0.9, 
and 1.0. In most cases, 0.7 was the best choice, 
so this value was selected for all components. As 
one of the referees pointed out, it is certainly 
possible that lower discount factor values would 
yield better results. However, this possibility was 
not explored in any detail, because management 
was uncomfortable with the rapid rate of change 
in the regression slope caused by lower discount 
factors. 

For the exponential smoothing model, a grid 
search was made over the range O-l for all 
parameters. This search was repeated for each 
subset of fit periods. Owing to the strong growth 
patterns in these series, model-fitting produced a 
near-linear trend in most cases, with a 6 value 
near 1.0. The smoothing results can be replicated 
using the Autocast II software (Gardner, 1992). 
See the user’s guide for more details on initial 
values of model components and the exact pro- 
cedures used in the parameter search. 

The MAPE results suggest that both the re- 

gression and smoothing models are adequate 
representations of every time series. This impres- 
sion was confirmed by testing for autocorrelation 
in the fitted residuals of the two models. No 
significant autocorrelation was found in any case. 
Judged by the MAPE, the regression model was 
consistently more accurate than smoothing. 
Comparisons are made for 30 sets of forecast 
periods in Table 1. Only one comparison, the 
last month of data in series D, favors the 
smoothing model. The RMSE results also favor 
the regression model. Regression was more 
accurate in 22 comparisons, while smoothing was 
better in only three. 

Combining the forecasts was not an effective 
strategy in these time series. There are only a 
few cases in which combining improves the 
MAPE or RMSE, and in many cases combining 
incurs a significant penalty. This is not surpris- 
ing, because the regression model thoroughly 
dominates the smoothing model. 

The one-step-ahead forecast simulation for 
series E is plotted in fig. 5. A matter of concern 
with this series is that the DLS regression is not 
appropriate after the structural change to a con- 
stant-level series. The problem is that the regres- 
sion slope coefficient becomes insignificant 
around period 40, as shown in Fig. 6. Although 
the regression forecasts behave much like simple 
exponential smoothing when the slope coefficient 
approaches zero, simpler models are always de- 
sirable in practice. Thus, management was ad- 
vised to switch the forecasting model to simple 

Fig. 5. Component E. One-step-ahead forecast simulation using DLS model. 
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Fig. 6. Component E. Monthly values of regression slope coefficient. 

smoothing when the DLS slope coefficient is not 
significantly different from zero. 

5. Forecast monitoring 

In any forecasting system for operational deci- 
sions, it is highly desirable to monitor the fore- 
cast errors in order to ensure that the system 
remains in control. One obvious indicator of an 
out-of-control condition is the first-order au- 
tocorrelation in the forecast errors. A DLS 
model to track the autocorrelation is (Gardner, 
1983) : 

COV, = e,e,_, + pCOV,_, (4) 

MSE, = e:_, + PMSE,_, 

rt = COV,/MSE, 

(5) 

(6) 

The tracking signal r is an estimate of the au- 
toregressive parameter on successive errors, 
COV is the smoothed covariance, MSE is the 
smoothed mean-squared-error, and p is the dis- 
count factor. 

Using p = 0.9, Gardner’s simulation results 
show that a control limit of 0.48 gives a prob- 
ability of about 1% that a false alarm will occur 
when the forecasting model is actually in control. 
The autocorrelation signal was implemented 
using this combination of discount factor and 
control limit for all time series, and no alarms of 

z$-~Ll~ + ~ 3b I ,~ l b 1 

Fig. 7. Component E. Behavior of the autocorrelation tracking signal. 
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any kind were encountered. This performance 
was confirmed by a review of the detailed results 
for each series. There was no reason to believe 
that alarms should have occurred. An example 
of the behavior of the tracking signal for com- 
ponent E is shown in Fig. 7. Some positive 
autocorrelation develops as a result of the 
change in structure of this series, but is not 
significant. It should be noted that there is dis- 
agreement with the control limits for tracking 
signals developed in Gardner (1983). See the 
discussion in M&lain (1988) and the comments 
by Sweet and Wilson (1988). However, it is not 
clear that this disagreement is relevant here, 
because the autocorrelation signal performed 
well with a variety of actual data using the 
control limit given above. Certainly I can see no 
reason to experiment with alternative control 
limits. 

6. Conclusions 

The DLS regression model, supported by the 
tracking signal, was implemented shortly after 
the study was completed. The model has been in 
operation for more than a year at the time of 
writing. Production plans are adjusted on a 
monthly schedule, so that stocks of spare com- 
ponents are maintained at the level of forecast 
demand plus three standard deviations of the 
forecast error. This strategy is simple, easy to 
understand, and gives a small probability that a 
shortage of replacement components will occur. 
The forecasting spreadsheets have been modified 
to make the safety stock computations automati- 
cally and to plot on-hand stocks versus target 
stock levels, much like quality control charts. 
The first set of charts revealed that more stock 
was on hand than was necessary to provide 
shortage protection at the three-standard-devia- 
tion level. Since then, stocks have gradually been 
reduced to target levels. In the future, stocks will 
be reduced further, because experience has 
shown that the three-standard-deviation level 
provides more shortage protection than is actual- 
ly required. 

The results of this study must be interpreted 
with caution because the time series analyzed are 
short. However, product life cycles in the com- 

puter industry are also short, and forecasting is 
not an elective activity. Without forecasting, 
there is no sensible basis for inventory control of 
the component parts. 

Judging from the forecasting literature, DLS 
estimation of an explanatory regression model is 
rare in practical applications. In Fildes’ review 
(1985) of econometric forecasting, DLS is not 
even mentioned. An independent search of the 
literature revealed only one discussion of an 
explanatory DLS regression model, that of 
Agnew (1982), although his application was 
hypothetical. The performance of DLS in this 
case study suggests that the methodology should 
at least be considered in practical applications. 

Future research will explore other approaches 
to modelling structural change in this and similar 
data on component failures. As one of the re- 
ferees pointed out, DLS has rather shaky theo- 
retical foundations compared with its alterna- 
tives. For example, a dynamic regression [see 
Harvey (1991); Snyder (1984)] may yield more 
reliable estimates of mean-squared-errors for 
safety stock determination. It will be worthwhile 
to know whether more complex approaches actu- 
ally produce better results from a practical point 
of view. 
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