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_____ NOTES_ _ _ 

SEASONAL EXPONENTIAL SMOOTHING 
WITH DAMPED TRENDS* 

EVERETTE S. GARDNER, JR. AND ED. McKENZIE 
College of Business Administration, University of Houston, Houston, Texas 77004 

Mathematics Department, University of Strathclyde, Glasgow, GI IXW, 
Scotland, United Kingdom 

In this paper we apply the strategy of trend-damping to the popular Winters exponential 
smoothing systems for seasonal time series. Efficient model formulations are derived for both 
multiplicative and additive seasonal patterns. An algorithm is given to test the stability of the 
models in cases where predetermined smoothing parameters are used. Empirical results are pre- 
sented to show that trend-damping improves ex ante forecast accuracy in seasonal data, especially 
at long leadtimes. 
(FORECASTING-TIME SERIES) 

1. Introduction 

In Gardner and McKenzie ( 1985), we developed a generalization of Holt's exponential 
smoothing system for a linear trend. The generalization added a damping parameter to 
the model to give more control over trend extrapolation. We showed that damping erratic 
trends improved long-range forecast accuracy with no loss in short-range accuracy. In 
this paper we apply the strategy of trend-damping to the popular Winters ( 1960) ex- 
ponential smoothing systems for seasonal time series. In ??2 and 3, we develop trend- 
damping systems for multiplicative and additive seasonal series, respectively. In ?4, the 
problems of parameter choice and system stability are examined. Empirical evidence on 
forecast accuracy is discussed in ?5. 

2. Multiplicative Seasonality 

For a linear trend with multiplicative seasonality, the Winters revision equations are 

St = a(X1/I1_.,) + (1 - a)(St,- .+ T,.1), (1) 

T, = 'y(S, - St,) + (1 - y)T,1, (2) 

It = 5(X,/St) + (1 - 3)1it _), (3) 

and the m-step-ahead forecast is 

XI( m = (SS + m T, )I,-P+,7, m = 1, 2, .. . , p. (4) 

We call (1 )-(4) the Winters-LM system. X, is the value of the time series at time t. S, 
is the estimated level component of the series and is smoothed using the parameter a. 
The trend component is T, which is smoothed using the parameter Y. In equation (3), 
the seasonal factors are denoted by I,, k = 1, 2, . . . , p, where p is the number of periods 
in one season. The seasonal factors are smoothed separately from the level and trend 
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components with (. All smoothing parameters are usually restricted to the range 0 to 1. 
Equation ( 4) computes the forecast for m steps ahead. This equation is valid only for m 
= 1, 2, ... , p. For example, to forecast for m = p + 1, ..., 2p, the seasonal factor in 
(4) should be I'-2p+m v 

To obtain a damped version of Winters-LM, we follow the procedure developed in 
Gardner and McKenzie ( 1985) and multiply the trend component by k everywhere it 
appears. The new forecasting system is called Winters-DM: 

St = a(X,/II_-p) + (1 - a)(S,.I + OT_I1) (5) 

T, = 'y(SI - S_-) + (1 - Y)kT,_1, (6) 

It = 6(X,/S,) + (1 - W)Ip, (7) 

and the m-step-ahead forecast is 
-n1 

XI(m) = (St + T IT)II-p+m, m = 1, 2, ... ,p. (8) 
i=l1 

Reformulating ( 5 )-( 7) in terms of the one-step-ahead error e, yields a simpler system: 

St = St-, + OT,I1 + he,/I,_p, (9). 

T= OT, + h2e,/I,_p, (10) 

It = I,,p + h3e,/S,, (11) 

where h, = a, h2 = ay, h3 = (1 - a)b. 

Winters-DM can also be reformulated to provide a direct estimate of the asymptotic 
level of the trend component of the forecasts. This is done by defining A, = S, + T,0/ 
(1 - 0) and B, =- T, /(I - ). Note that the asymptotic level is A,. The components 
A, and B, are revised using 

A, = At-, + g1e,/IeIp, (12) 

B, = /B,.1 + g2e/IIp, (13) 

It = I,,p + g3e,/(A, + B,), (14) 

and the forecast equation becomes 

X(m) = (A, + kn7B,)I,_p+?77, m = 1,2,. ... ,P. (15) 

Equations (12)-(15) are identical to (5)-(8) when 0 < 0 < 1, g1 = hi + 0h2/( 1 -) 
and g2 = -oh21(1 - /). The system defined by (12)-(15) is much simpler, both in 
revision of the forecasts and in avoidance of a summation in the forecast equation. The 
disadvantage of (12)-(15) is that separate provision must be made for the case when 

= 1. 

3. Additive Seasonality 

The development of Winters-DA, to model a damped trend with additive seasonality, 
is similar to the multiplicative case. The Winters-DA system is: 

St = a(X, - I.p ) + (1 - a)(S,.. + kT,I-1), (16) 

T, = y(S, - S,-) + (1 - y)OT,1, (17) 

It = 6(X, - S,) + (1 - W)IP, (18) 

X(m) = St + 5 X'T, + I_p+m, m= 1,2,...,p. (19) 
I=I1 
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Using the one-step-ahead error el, an equivalent system is defined as 

St = St-i + OT,I1 + hie,, (20) 

T, = OT,I1 + h2e,, (21) 

It = It-, + h3e,, (22) 

where hi, h2, h3 are as before. 
Again we reformulate to get a direct estimate of the asymptotic level of the trend 

component: 

A, = At- + g1e,, (23) 

B, = OBt-I + g2e,, (24) 

where g, and g2 are as before. Equation ( 22) is used to revise the seasonal factors. The 
forecast equation becomes 

X (m) = At + OmB, + I_-p+m, m = 1, 2, ...,5p . (25) 

4. Parameter Choice and System Stability 

The damped Winters systems have four parameters: h1, h2, h3, and k. We can reduce 
the number of parameters to three by using discounted-least-squares (DLS) to smooth 
the level and trend components. DLS parameters were developed for the nonseasonal 
Holt-D system in Gardner and McKenzie ( 1985) and can be applied to the Winters 
systems. With A as the discount factor, the DLS solution for level and trend parameters 
in both Winters-DM and DA is: 

hi = 1 - (3/0)2; h2 = (1 - f/0)(1 - f/02). (26) 

Regardless of the number of parameters in the forecasting system, we need some 
method of determining whether the parameters chosen yield a stable system. If the system 
is unstable, the forecasts become more dependent on the remote past as additional data 
become available. This is unreasonable in general and surely intolerable for any forecasting 
system based on exponential smoothing principles, which stress the importance of recent 
observations. Although we do not expect that model-fitting will lead to an unstable system, 
practitioners often choose parameters in advance, without any model-fitting. For the 
nonseasonal Holt-D system, we were able to derive an equivalent ARIMA process that 
determined an explicit region of stability (Gardner and McKenzie 1985). However, the 
Winters-DM system is nonlinear and has no equivalent ARIMA process. This is also 
true of Winters-LM. Winters-DA and LA are linear systems and thus have equivalent 
ARIMA processes but the processes are so complex as to be of little practical use. 

Although we cannot derive explicit regions of stability for Winters-DM and DA, nu- 
merical methods are available to test system stability. In the appendix, a numerical al- 
gorithm based on Wilson ( 1979) is given to test the Winters-DA system. Either system 
can be accepted as stable if its parameters are stable in Winters-DA. This conclusion is 
based on the work of Sweet ( 1985), who showed that Winters-LM and LA have ap- 
proximately the same stability regions. This result holds for Winters-DM and DA as well. 

5. Empirical Results 

This section gives empirical forecasting results using the collection of 60 seasonal time 
series from Makridakis et al. ( 1982). Forecasting was done in the same manner as Mak- 
ridakis. For quarterly series, models were fitted to the first N - 8 observations; post- 
sample forecasts were made at origin N - 8 for horizons 1 to 8. For monthly series, 
forecasts were made at origin N -18 for horizons 1 to 18. Other computational details 
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TABLE 1 

MAPE Comparisons for 60 Seasonal Time Series 

Forecast Winters- Winters- Winters- Box- 
Horizon DM DA LM Jenkins Parzen Lewandowski 

1 6.2* 7.2 8.9 10.5 11.0 10.8 
2 7.7 7.0* 9.8 10.1 10.0 12.9 
3 7.6* 8.6 10.5 10.0 10.1 12.6 
4 9.9* 10.4 13.6 13.5 12.8 14.3 
5 9.8* 10.9 11.5 13.7 12.2 12.9 
6 11.7* 12.6 14.7 15.9 13.7 17.3 
8 15.5* 15.5* 19.9 20.6 16.1 19.8 

12 12.5* 13.3 14.9 15.1 13.9 16.6 
15 25.9 23.2 34.0 23.3 19.2* 33.7 
18 23.7* 24.3 32.7 30.6 24.8 23.8 

All 13.8* 13.9 18.1 17.2 14.9 17.6 

* Indicates row minima. 

necessary to replicate this research are available in Makridakis et al. ( 1982) and Gard- 
ner ( 1988). 

Mean-absolute-percentage-error ( MAPE) comparisons for the series are shown in Table 
1. Results for the four-parameter versions of Winters-DM and DA are given along with 
selected results from Makridakis et al. ( 1982) for Winters-LM, Box-Jenkins, Parzen, and 
Lewandowski. The strategy of damping trends improves forecast accuracy compared to 
Winters-LM, especially at long horizons. Winters-DM and DA also compare favorably 
to the more complex forecasting systems. 

There is little difference in overall MAPE between Winters-DM and DA. The reason 
appears to be the nature of the seasonal patterns in these time series. Few patterns are 
purely additive or multiplicative and many series switch between seasonal and nonseasonal 
behavior. 

Another way to judge Winters-DM and DA is to test for autocorrelation in the residuals 
from model-fitting. For both models, significant first-order autocorrelation was found in 
the residuals in only 7% of the seasonal series. In contrast, for Winters-LM, autocorrelation 
was found more than 30% of the time. 

In the Makridakis et al. (1982) study, it was found that deseasonalizing the data and 
then using a nonseasonal predictor provided good forecasts. It is reasonable to ask whether 
smoothing the seasonal pattern improves accuracy compared to the use of deseasonalized 
data. The answer appears to be "yes," although the differences are small. If Holt-D is 
used with deseasonalized series, the overall MAPE is 14.1% versus 13.8% for Win- 
ters-DM. 

The effects of constraining the parameters with DLS via equation ( 26) were also tested. 
As expected, the DLS constraint resulted in shorter computation times but with some 
loss of accuracy. The overall MAPEs using DLS were 14.1% for Winters-DM and 14.3% 
for Winters-DA. 

6. Conclusions 

This paper applies the strategy of trend-damping to exponential smoothing of seasonal 
time series. Although trend-damping adds some complexity, Winters-DM and DA are 
still reasonably simple and efficient forecasting systems. They should be suitable for 
automatic forecasting in large applications such as in inventory control. The main ad- 
vantages of Winters-DM and DA are that they avoid overshooting the data and excessive 
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amplification of the seasonal pattern, two problems common to seasonal exponential 
smoothing with linear trends. 

Appendix: Stability Algorithm 

The stability algorithm tests parameters in the range 0 < hi, h2, h3, 0 < 1. The algorithm is based on an 
array W defined recursively. Initially, the elements are: 

W(p + 1, 1) = 0- h-02 

W(p + 1, k) = (h, - h2) - h, k = 2, 3 . . . p- 

W(p + 1, p) = 1 - hi - h3 - O(h2 - h, 

W(p + l, p + 1) = q(h, + h3 - 1), 

The algorithm is: 
1. Setk=p+ 1. 
2. Compute D = 1 - W(k, k)2. 
3. If D ' 0, the system is UNSTABLE. 
4. Compute W(k- 1, i)= [W(k, i)+ W(k, k)W(k, k- i)]/D fori = 1, 2 . . . k- 1. 
5. Setk= k- 1. 
6. If k > 2, go to step 2. 
7. If W( 1, 1)2 < 1, the system is STABLE. Otherwise the system is UNSTABLE. 

References 

GARDNER, E. S., A UTOCAST User's Guide, Levenbach Associates, Morristown, NJ, 1988. 
AND E. McKENZIE, "Forecasting Trends in Time Series," Management Sci., 31 (October 1985), 1237- 
1246. 

MAKRIDAKIS, S. ETAL., "The Accuracy of Extrapolation (Time Series) Methods: Results of a Forecasting 
Competition," J. Forecasting, 2 (April-June 1982), 111-153. 

SWEET, A. L., "Computing the Variance of the Forecast Error for the Holt-Winters Seasonal Models," J. 
Forecasting, 4 (October-December 1985), 235-243. 

WILSON, G. T., "Some Efficient Computational Procedures for High Order ARMA Models," J. Statist. Comput. 
Simulation, 8 (April 1979), 301-309. 

WINTERS, P. R., "Forecasting Sales by Exponentially Weighted Moving Averages," Management Sci., 6 (April 
1960), 324-342. 

MANAGEMENT SCIENCE 
Vol. 35, No. 3, March 1989 

Printed in U.S.A. 

_____ NOTES_ _ _ 

DEVELOPING A GLOBAL DIVERSIFICATION MEASURE* 
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Business, Ann Arbor, Michigan 48109-1234 

Previous measures, focusing on either the international market or product dimension of corporate 
diversification, have been unsatisfactory for analyzing global diversification since both dimensions 

* All Notes are refereed. 
Accepted by Richard M. Burton; received July 22, 1987. This Note has been with the author 3 months for 

2 revisions. 

376 
0025-1909/89/3503/0376$01.25 

Copyright (? 1989, The Institute of Management Sciences 


	Article Contents
	p. 372
	p. 373
	p. 374
	p. 375
	p. 376

	Issue Table of Contents
	Management Science, Vol. 35, No. 3 (Mar., 1989), pp. 259-385
	Front Matter
	Characterizations of Optimal Portfolios by Univariate and Multivariate Risk Aversion [pp.  259 - 269]
	Discount Rates Inferred from Decisions: An Experimental Study [pp.  270 - 284]
	The Effect of Task Demands and Graphical Format on Information Processing Strategies [pp.  285 - 303]
	Product Assortment in a Triopoly [pp.  304 - 320]
	Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment [pp.  321 - 339]
	Forgetting and the Learning Curve: A Laboratory Study [pp.  340 - 352]
	Capacitated Lot Sizing with Setup Times [pp.  353 - 366]
	Implicit Treatment of "Zero or Range" Constraints in a Model for Minimum Cost Foundry Alloys [pp.  367 - 371]
	Notes
	Seasonal Exponential Smoothing with Damped Trends [pp.  372 - 376]
	Developing a Global Diversification Measure [pp.  376 - 383]

	Back Matter [pp.  384 - 385]



