
A Simple Method of Computing Prediction Intervals for Time Series Forecasts
Author(s): Everette S. Gardner, Jr.
Source: Management Science, Vol. 34, No. 4 (Apr., 1988), pp. 541-546
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/2631941 .
Accessed: 16/02/2011 15:23

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at .
http://www.jstor.org/action/showPublisher?publisherCode=informs. .

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Management Science.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=informs
http://www.jstor.org/stable/2631941?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=informs


MANAGEMENT SCIENCE 
Vol. 34, No. 4, April 1988 

Printed in U.S.A. 

A SIMPLE METHOD OF COMPUTING PREDICTION 
INTERVALS FOR TIME SERIES FORECASTS* 

EVERETTE S. GARDNER, JR. 
College of Business Administration, University of Houston, Houston, Texas 77004 

Theoretical approaches to computing prediction intervals require strong assumptions that do 
not appear to hold in practice. This paper presents an empirical approach to prediction intervals 
that assumes very little. During model-fitting, variances of the errors are computed at different 
forecast leadtimes. Using these variances, the Chebyshev inequality is applied to determine 
prediction intervals. Empirical evidence is presented to show that this approach gives reason- 
able results. For example, using the 1 1 1 series in the M-competition, 95% prediction intervals 
actually contain 95.8% of post-sample observations. 
(FORECASTING-TIME SERIES) 

1. Introduction 

Almost all point forecasts are wrong. Thus prediction intervals are needed to indicate 
the likely precision of the forecasts for management planning. Prediction intervals are 
especially helpful in forecasting for inventory control, where safety stocks depend on 
the probability distribution of leadtime demand. Another application of prediction 
intervals is to identify outliers in time series. 

Traditionally, prediction intervals are computed by making one of two critical as- 
sumptions: (1) the correct model has been identified or (2) the generating process for the 
time series is known. In most cases, these assumptions make it straightforward to derive 
closed-form expressions for variances of the forecast errors at different leadtimes. 

For example, Box and Jenkins (1976) rely on the first assumption to obtain predic- 
tion intervals for ARMA models. Advocates of exponential smoothing do not assume 
that the correct model is used. Instead they assume that the generating process is known 
and derive variances based on the relationship between this process and the model at 
hand. See, for example, the expressions for variances of exponential smoothing models 
in Brown (1963), McKenzie (1976, 1984, 1986), and Sweet (1985). To simplify matters, 
both ARMA modelers and exponential smoothers almost always make another critical 
assumption, that the errors are normally distributed. 

One problem with this theoretical work on prediction intervals is that it is impossible 
to obtain closed-form expressions for the variances of nonlinear forecasting systems. 
For example, there is no closed form for the popular Holt-Winters class of exponential 
smoothing systems with linear trend and multiplicative seasonality (McKenzie 1984). 
For such systems, an empirical method is the only alternative for computing prediction 
intervals. 

Another problem is that theoretical prediction intervals often yield poor results in 
practice. In a reexamination of the 111 time series from the M-competition (Makri- 
dakis et al. 1982), Lusk and Belhadjali (1986) found that 95% prediction intervals for 
ARMA models contained only about 80% of post-sample observations. Makridakis and 
Hibon (1986) obtained similar results for other time series models. 

One solution to these problems is the approach taken by Williams and Goodman 
(1971), who developed empirical distributions of post-sample forecast errors. Their 
procedure is to fit a model to a sample of a time series, make a set of forecasts from one 
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time origin, compile the post-sample errors, and refit the model with one additional 
observation. These steps are repeated until the end of the data is reached. The Williams 
and Goodman procedure is so tedious that no applications since 1971 appear to have 
been reported. 

This paper suggests a simple method of computing prediction intervals that avoids 
the need to make assumptions about the validity of the model, the form of the generat- 
ing function, or the form of the distribution of forecast errors. Although the method is 
empirical, it is far less tedious than the Williams and Goodman approach. 

2. The Method 

Given that a forecasting model has been fitted to a time series, the first step is to 
compute variances of fitted errors at different leadtimes. For example, suppose we have 
a model selected on the usual basis of one-step-ahead fit. One pass through the data is 
made to compute the variance of the fitted errors at one-step-ahead. A second pass is 
made to compute the variance at two-steps-ahead. It is important to understand that 
the forecasting model is not re-estimated. We simply make two-step-ahead forecasts 
with the same model and compute the variance of the fitted errors. This process is 
continued until an individual variance is computed for each desired leadtime. For 
example, if prediction intervals are desired for leadtimes 1- 12, there will be 12 individ- 
ual variances. The advantage of this method of computing variances is that the validity 
of the model and the form of the generating function are irrelevant. We simply record 
the performance of the model. 

The second step in the procedure is to compute standard errors at each leadtime. The 
final step is to apply a multiplier to each standard error that yields the desired prediction 
intervals. The multiplier is based on the Chebyshev inequality (Wilks 1962), which sets 
a bound on the amount of probability within given limits for any distribution with 
finite variance. Since the Chebyshev inequality is well known, only the main result is 
given here. Let Y be a random variable with mean ,u and variance a2. The inequality is 

P[K(Y- OM)/oj > E] E 1/E2. (1) 

No matter what the actual distribution, equation (1) states that the probability of an 
observation falling beyond E standard errors from the mean is at most 1/E2. 

Admittedly the Chebyshev inequality generates crude bounds for many known dis- 
tributions. For example, if the true distribution of errors is normal, the Chebyshev 
bounds are much too wide. But in practice the true distribution of errors is never 
known. Makridakis and Winkler (1985) were unable to find any distribution that gave a 
reasonable fit to the errors in a collection of 1,001 time series. Their study suggests that 
it is dangerous to assume some arbitrary distribution for the errors. The simple expres- 
sion in (1) is at least a starting point for the development of prediction intervals. 

3. Empirical Results 

The time series from the M-competition (Makridakis et al. 1982) were used to test 
this method of computing prediction intervals. Forecasts were produced using the class 
of exponential smoothing systems with damped trends developed by Gardner and 
McKenzie (1985). Other computational details sufficient to replicate the results below 
are available in Gardner (1986). 

Forecasting was done in exactly the same manner as Makridakis. Let the length of a 
series be N. For annual series, the forecasting model was fitted to the first N - 6 
observations. A set of 6 forecasts (for leadtimes 1-6) was made at time origin N - 6. For 
quarterly data, 8 forecasts were made at N - 8. For monthly data, 18 forecasts were 
made atN- 18. 
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FIGURE 1. Percentage of Post-Sample Observations Inside Prediction Intervals: 111 Time Series. 

90% Target 95% Target 
Forecast 
Leadtime Chebyshev Normal Chebyshev Normal 

1 94.6% 82.9% 97.3% 88.3% 
2 93.7 77.5 99.1 83.8 
3 94.6 73.0 96.4 85.6 
4 91.9 71.2 95.5 80.2 
5 84.7 72.1 93.7 77.5 
6 86.5 66.7 91.9 72.1 

7 91.2 70.3 95.6 73.6 
8 92.3 69.2 96.7 74.7 
9 92.6 76.5 98.5 80.9 

10 89.7 73.5 98.5 75.0 
11 94.1 73.5 97.1 77.9 
12 89.7 72.1 95.6 79.4 

13 86.8 70.6 94.1 73.5 
14 91.2 73.5 97.1 79.4 
15 89.7 66.2 94.1 73.5 
16 92.6 79.4 95.6 83.8 
17 88.2 75.0 94.1 82.4 
18 89.7 67.6 94.1 76.5 

All 90.8% 72.9% 95.8% 79.1% 

The Makridakis data include 1,001 time series. Figure 1 gives results for a sample of 
111 series taken from the 1,001. This is the same sample discussed in Makridakis et al. 
(1982). For each series, 90% and 95% prediction intervals were computed and the 
number of post-sample observations inside the intervals was recorded. The Chebyshev 
prediction intervals contain approximately the desired percentages: 90% intervals con- 
tain 90.8% of post-sample observations, while 95% intervals contain 95.8%. 

Figure 1 also gives results for prediction intervals assuming the normal distribution 
and using the method of computing variances described above. Normal 90% intervals 
contain only 72.9% of post-sample observations, while normal 95% intervals contain 
only 79.1%. The normal percentages inside prediction intervals are comparable to the 
results reported by Williams and Goodman (1971), Lusk and Belhadjali (1986), and 
Makridakis and Hibon (1986). 

Figure 2 gives results for the complete collection of 1,001 time series. Percentages 
inside the prediction intervals are similar to Figure 1. 

Does the performance of Chebyshev prediction intervals depend on the type of data? 
To answer this question, further tests were made using subsets of the 111 time series. 
The results shown in Figure 3 are average percentages over all forecast horizons. There 
is little difference in Chebyshev performance between seasonal and nonseasonal data. 
However, there is an important difference in performance when the time series are 
classified by frequency of observation (annual, quarterly, and monthly). Chebyshev 
percentages are near targets for quarterly and monthly series but are substantially below 
targets in annual series. The problem is that most of the annual series in the Makridakis 
collection are too short to fit an adequate forecasting model. In the 20 annual series, the 
average number of fitted observations is 19.7. Nine of the annual series have 13 fitted 
observations and one has only 12. The quarterly and monthly series are much longer 
and average 38.4 and 68.4 fitted observations, respectively. 

The sensitivity of Chebyshev prediction intervals to the number of fitted observations 
is shown in more detail by Figure 4. With less than 20 fitted observations, the Cheby- 
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FIGURE 2. Percentage of Post-Sample Observations Inside Prediction Intervals: 1,001 Time Series. 

90% Target 95% Target 
Forecast 
Leadtime Chebyshev Normal Chebyshev Normal 

1 96.2% 80.1% 98.6% 86.2% 
2 95.1 77.3 98.0 84.1 
3 93.2 75.9 96.4 82.0 
4 91.6 72.7 96.1 77.7 
5 89.2 71.3 94.7 76.0 
6 88.0 66.3 93.3 71.8 

7 91.7 71.5 96.8 77.2 
8 90.1 69.6 96.0 75.9 
9 92.2 72.8 97.6 77.0 

10 93.4 73.7 97.9 78.6 
11 92.1 73.9 96.8 78.1 
12 92.9 72.8 97.7 77.2 

13 91.4 71.6 96.6 76.8 
14 91.9 72.5 96.6 77.8 
15 91.1 69.5 96.3 74.6 
16 90.4 71.4 95.6 77.8 
17 90.6 70.7 96.1 78.9 
18 89.3 70.2 95.5 74.4 

All 91.8% 72.7% 96.4% 78.2% 

FIGURE 3. Performance by Type of Data. 

90% Target 95% Target 
Type of Nbr. of Nbr. of 

Data Series Forecasts Chebyshev Normal Chebyshev Normal 

All data 111 1,528 90.8% 72.9% 95.8% 79.1% 

Seasonal 60 990 91.7 72.2 96.7 77.8 
Nonseasonal 51 538 89.0 73.1 93.1 79.2 

Annual 20 120 78.3 58.3 83.3 63.3 
Quarterly 23 184 88.0 59.2 95.7 71.7 
Monthly 68 1,224 92.0 75.4 95.9 80.3 

FIGURE 4. Performance by Number of Fitted Observations. 

90% Target 95% Target 
Nbr. of Nbr. of Nbr. of 

Fitted Obs. Series Forecasts Chebyshev Normal Chebyshev Normal 

<20 17 110 71.8% 51.8% 82.7 57.3% 
20-29 6 40 92.5 75.0 95.0 80.0 
30-39 16 204 92.2 74.5 95.6 81.4 
40-49 13 204 93.6 67.2 98.5 76.0 
50-59 16 216 89.8 74.5 95.8 80.1 
>60 43 754 91.9 74.9 95.4 79.8 

shev intervals are not reliable. With 20 or more fitted observations, Chebyshev intervals 
are highly reliable. 

There are at least two explanations for the good performance of the Chebyshev 
inequality. First, as discussed in Makridakis and Winkler (1985), the errors are not 
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normally distributed in these data, regardless of the forecasting method. Second, in this 
research as well as in the M-competition, post-sample forecast errors were larger than 
within-sample errors. The Chebyshev inequality yields wider prediction intervals than 
the normal distribution in order to compensate for larger post-sample errors. 

One reason that larger errors occur during the post-sample period is that time series 
frequently display changes in pattern or discontinuities. Except for Carbone and 
Makridakis (1986), this problem has been ignored in the literature. There are many 
series in the Makridakis data that display changes in the direction of trend after the 
forecasts are made. Figure 5 illustrates this problem for the quarterly time series (num- 
ber 301) that was analyzed in Carbone and Makridakis (1986). This series is composed 
of 64 observations, with a weak seasonal pattern and an unstable trend. An exponential 
smoothing model with damped trend and multiplicative seasonality was fitted to the 
series, using quarters 1-56. During model-fitting, prediction intervals were developed 
for quarters 57-64. The Chebyshev intervals accommodate the drastic change in trend 
whereas the normal intervals do not. All eight post-sample observations are inside the 
Chebyshev intervals, while only three are inside the normal intervals. 

4. Conclusions 

The normal distribution is a standard assumption for determining prediction inter- 
vals in time series forecasting. However, normal prediction intervals are dangerously 
misleading. Normal intervals are too small regardless of the forecast leadtime, the type 
of data, or the number of fitted observations. This finding is consistent with other work 
using a variety of different forecasting methods by Williams and Goodman (1971), 
Lusk and Belhadjali (1986), and Makridakis and Hibon (1986). 

Since it appears to be impossible to find any adequate distribution for forecast errors, 
the Chebyshev inequality seems an obvious alternative for setting bounds on the errors. 
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In the Makridakis data, the Chebyshev yields accurate prediction intervals. Compared 
to the normal distribution, the primary reason that the Chebyshev works is that it 
increases prediction intervals to compensate for larger errors during the post-sample 
period. There is no guarantee that this strategy will perform as well in other data. 
However, deteriorating accuracy during the post-sample period has been observed in 
numerous empirical studies and is by now a generally accepted outcome in time series 
forecasting. 

In order to apply the Chebyshev inequality, variances of the errors by forecast lead- 
time are necessary. The method of estimating variances in this paper is simple and does 
not rely on any assumptions about the validity of the model or the form of the generat- 
ing function for the time series. The method is certainly time-consuming but it is less so 
than the Williams and Goodman approach.' 

' The author is indebted to two anonymous referees and Professor Lynn Lamotte of the University of 
Houston for helpful suggestions on this research. 
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