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FORECASTING TRENDS IN TIME SERIES* 

EVERETTE S. GARDNER, JR. AND ED. McKENZIE 
Operations Analysis Department, Navy Fleet Material Support Office, P.O. Box 2010, 

Mechanicsburg, Pennsylvania 17055 
Mathematics Department, University of Strathclyde, 

Glasgow GI 1XW, Scotland, United Kingdom 

Most time series methods assume that any trend will continue unabated, regardless of the 
forecast leadtime. But recent empirical findings suggest that forecast accuracy can be im- 
proved by either damping or ignoring altogether trends which have a low probability of 
persistence. This paper develops an exponential smoothing model designed to damp erratic 
trends. The model is tested using the sample of 1,001 time series first analyzed by Makridakis 
et al. Compared to smoothing models based on a linear trend, the model improves forecast 
accuracy, particularly at long leadtimes. The model also compares favorably to sophisticated 
time series models noted for good long-range performance, such as those of Lewandowski and 
Parzen. 
(FORECASTING-TIME SERIES) 

1. Introduction 

Research in time series analysis and forecasting has traditionally been concerned 
with modelling the autocorrelation structure in a stationary time series. However, as 
discussed in Fildes (1983), recent empirical work has shown this to be a relatively 
unimportant problem compared to the modelling of trends. For example, Makridakis 
et al. evaluated the post-sample accuracy of 21 automatic forecasting methods on a 
collection of 1,001 time series. The accuracy of all methods deteriorated badly at 
leadtimes more than a few steps ahead. This was particularly true of methods based on 
a linear trend which typically overshot the data at long leadtimes. 

Makridakis also examined a subset of 111 time series taken from the 1,001. Several 
sophisticated methods were tested in this subset in addition to the 21 automatic 
methods. The sophisticated methods included the Box-Jenkins approach, the FOR- 
SYS system of Lewandowski (1982), and the ARARMA methodology of Parzen (1979, 
1982). Like the automatic methods, Box-Jenkins did badly at long leadtimes. How- 
ever, Lewandowski and Parzen were the most accurate at long leadtimes among all 
methods tested. 

Lewandowski's FORSYS system is widely used in European companies. The distin- 
guishing feature of FORSYS is that it damps the trend as the forecast leadtime 
increases. The rate of damping increases with the level of noise in the series. The 
rationale is that the more noise in the series the greater the risk in trend extrapolation. 
It is difficult to say more than this about FORSYS because the system is proprietary. 

Parzen's approach attempts to classify the "memory" of the time series. "Short- 
memory" series are covariance-stationary and are modelled by conventional ARMA 
schemes. "Long-memory" series contain trends modelled by nonstationary autoregres- 
sion. This approach produced models robust at all leadtimes. 

The Makridakis study indicates the need for more research in trend extrapolation, 
particularly for relatively simple models which can be used in automatic forecasting 
systems. This paper develops and tests a generalization of the widely-used Holt model 
for exponential smoothing of a linear trend. The generalization adds a damping 
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parameter to the model to give more control over trend extrapolation. The damping 
parameter corresponds to an autoregressive term in the equivalent ARIMA process. 
For this reason, we refer to it as the autoregressive-damping (AD) parameter. 

Exponential smoothing systems including AD-parameters are not new. They have 
been noted as members of certain larger classes of forecasting systems by Gardner 
(1985), Gilchrist (1976), and Roberts (1982). However, there has been no theoretical or 
empirical investigation of such systems. That is the purpose of this work. ?2 discusses 
theoretical considerations in the use of AD-parameters, including alternative model 
formulations, stability regions, the effects of parameter choice, and equivalent ARIMA 
processes. 

?3 is an empirical study of forecast accuracy. The generalized and standard Holt 
models are compared using the 1,001 time series from Makridakis et al. (1982). 
Comparisons are also made to the Lewandowski and Parzen approaches on the subset 
of 111 series. Conclusions from the empirical work enable us to make some positive 
recommendations in ?4 about the practical application of the generalized Holt model. 

An appendix on computational details is included. This should enable the empirical 
results to be replicated. 

2. Theoretical Development 

2.1. Model Formulations 

We begin with the standard Holt (1960) formulation for exponential smoothing of a 
linear trend: 

St = aXt + (1- a)(S -I + Tt-l) (1) 

Tt = -Y(St - S,-,) + O - -7)Tt-,, (2) 
A 

X,(m) = S, + mT,. (3) 

St is the local level of the series and Ti is the trend. X,(m) is the forecast at origin t for 
m steps ahead. The smoothing parameters a and y are usually restricted to the range 0 
to 1 in practice although the model is stable over a wider range. 

The trend estimate can be modified with an AD-parameter p. The revised model is: 

S,= aX + (1 -a)(S,-I + OT-1), (4) 

T, = Y(S - S,-,I) + (1--Y)OTt_ I, (5) 
m 

Xt(m) = St + 2+mTt (6) 
i1= I 

This generalization includes four possibilities for trend depending on the value of 4. If 
0 = 0, there is no trend in the forecasts-the model is equivalent to simple smoothing. 
If 0 < 4 < 1, the trend is damped and the forecasts approach an asymptote given by 
the horizontal straight line St + T>(1 - p). If 4 = 1, the model is equivalent to the 
standard version of the Holt model and the trend is linear. Finally, if p > 1, the trend 
is exponential, which is probably a dangerous option in an automatic forecasting 
model. 

In many forecasting systems, it is common practice to apply the same exponential 
smoothing model to every time series. This practice is unavoidable in large inventory 
systems where thousands of forecasts are needed each time period. If the generalized 
model is fitted over the range 0 to 1 for each parameter, accuracy should be better on 
average than standard Holt. Apart from wider applicability, the rationale for using the 
generalized model as an automatic forecaster is similar to that of Lewandowski. With a 
strong trend in the data, p should be fitted at a value near 1 and the forecasts should 
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be nearly the same as Holt. If the data are extremely noisy or if the trend is erratic, the 
model should damp the trend with a 4 less than 1. 

The model in (4)-(6) is cumbersome but can be simplified considerably. Using the 
one-step-ahead forecast error e, = X, - S,_ - T,> , we can rewrite (4) and (5) as 

S, = X,t-(I) + h1e,, (7) 

T, = 4T,_ I + h2e,, (8) 

where h, = a, h2 = aY. 

Further simplification can be achieved by separating the level and trend compo- 
nents of the model. First define A, = S, + T,t/(l -4)), and B, = - T,t/(1 -4)). A, is 
the asymptote. Note that B, has an opposite sign to the trend in (8). These comp6nents 
can be smoothed with: 

A,= A,_, + ge,, (9) 

B, =B)B,I + g2e,, (10) 

X,(m) = A, + omB,. ( 11) 

The forecasts from (9)-(1 1) are identical to those of (6)-(8) when < K 1 and g, = a + 
ay1/(l - 4), g2 = - ayyl/(I - 4). The advantage of this form of the model is that we 
avoid the need for a summation in the forecast equation. A direct estimate of the 
asymptote is also provided. The disadvantage is that separate provision must be made 
for the case of 4 = 1. 

2.2. Model Stability and Parameter Choice 

The model in (6)-(8) is stable over a wide range for h, and h2 defined by: 

(4-1)/4 < h, < (4+ +1)/4, 4)h2 +(1 -)hl > 0, 4h2 + (1 + )hl < 2(1 +4). 

Within the region of stability, the search for parameters can be constrained in many 
ways. Exhibit 1 shows several regions of choice for h, and h2 (with the restriction that 
0 < 4 < 1). The three-parameter model discussed above constrains h1 and h2 to lie 
within the triangle (above the diagonal of the unit square). 

A three-parameter nonseasonal model may be cumbersome in some applications. 
Discounted least squares (DLS) can be used to reduce the number of parameters to 
two. With discount factor ,B, the function to be minimized is: J7O 0,3 [Xt -- 

EXHIBI .Regionsk 2of Me Coc 

lk 24WM MM OMNBl 

?' 11~~~ 

oL r ,. , ;~~~~~~~~~ 



1240 EVERETTE S. GARDNER, JR. AND ED. McKENZIE 

Xt(_j)]2. Following McKenzie (1976), the solution is given by (6)-(8) with: 

h, =[1 - (#//)2 ], h2 =[1 - (1/02)[I - (12) 

When p = 1, (12) reduces to the DLS solution for a linear trend recommended by 
Brown (1963). Region A in the exhibit corresponds to (12) and lies within the region 
for the three-parameter model. 

Another way to reduce the number of parameters to two is to use: 

h, = at(2 - a), h2 = at(a - + 1). (13) 

This is region B in the exhibit. (13) is an heuristic designed like (12) to give the DLS 
solution for a linear trend when p = 1. Note that (13) allows h2 to be larger than h1, 
which is not possible in the three-parameter model or in (12). 

An empirical comparison of the forecast accuracy resulting from choosing parame- 
ters in these regions is given in the Appendix. The three-parameter model appears to 
be the most accurate. This should be expected because its region of choice includes all 
of the region for (12) and most of that for (13). However, the differences in accuracy 
among the three regions are small and may be insignificant to many users. Regardless 
of how parameters are selected, model (6)-(8) is more accurate than models based on a 
linear trend. 

Using either two or three nonseasonal parameters, it is straightforward to incorpo- 
rate seasonality in model (6)-(8). A selection of three-parameter seasonal models is 
given in Gardner (1985). 

2.3. Equivalent ARIMA Processes 

It is now well known that linear forecasting systems often have equivalent ARIMA 
processes. By equivalent, we mean that the forecasts are minimum mean squared error 
(MSE) forecasts for the corresponding ARIMA processes. For a fuller discussion and 
examples, reference may be made to Gardner (1985) or McKenzie (1984). The 
forecasting system given by (6)-(8) has at least six equivalent processes. These 
processes provide a statistical rationale for the model. In particular they can be used to 
compute the variance of the errors in order to set confidence limits around the 
forecasts. 

If 0 < 4 < 1, the trend is damped and the equivalent process is ARIMA (1, 1,2) 
which can be written as: 

(1- B)(1 -B)Xt = [1- (1 + -hh -h2)B -4(h, - I)B2]et. (14) 

We can also obtain an ARIMA (1, 1, 1) process by setting hI = 1. With h, = h2 = 1, the 
process is ARIMA (1, 1,0). 

When p = 1, the trend is linear and the process is ARIMA (0, 2,2): 

(I1- B)2Xt = [I 1-(2 - h -h2)B -(h, - )B 2]et . (15) 

When p = 0, we have simple smoothing and the equivalent ARIMA (0, 1, 1) process: 

(1-B )Xt = [ 1-(1-h1)]et. (16) 

The ARIMA (0, 1,0) process, or random walk model, can be obtained from (16) by 
choosing h, = 1. 

All six ARIMA processes were identified amongst the 1,001 time series of the 
Makridakis data. Due to the parameter restrictions shown in Exhibit 1, these processes 
are only a subset of the possible ARIMA processes of the same order. To illustrate, in 
(14) we chose 6 from the range 0 to 1. In the general ARIMA (1, 1,2), p can range 
from -ito 1. 
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The parameter restrictions do not appear to be a practical disadvantage. As shown 
in the next section, model (6)-(8) is robust, which is a major consideration in the 
design of exponential smoothing systems. 

3. Results of the Empirical Study 

3.1. Data and Experimental Design 

The accuracy of the generalized Holt model in (6)-(8) was evaluated using the 
collection of 1,001 time series first analyzed by Makridakis et al. (1982). This collection 
includes 181 yearly, 203 quarterly, and 617 monthly series. Another classification of 
the series is by level of aggregation. There are 302 series of company sales, 236 of 
industry sales, 319 macroeconomic series, and 114 demographic series. About two- 
thirds of the series are seasonal. The collection includes a wide range of starting and 
ending dates. 

In the Makridakis study, each series was divided into two segments. Suppose there 
are N observations in each series. For the annual series, models were fitted to the first 
N - 6 observations; postsample forecasts were made at origin N - 6 for horizons 1 to 
6. No postsample observations were used to generate forecasts. For the quarterly and 
monthly series, forecasts were made at origins N - 8 and N - 18 for the last 8 and 18 
observations, respectively. Postsample forecast errors were compiled by horizon and 
averaged over all series. 

When models were fitted to deseasonalized data, the seasonal indexes were com- 
puted with the ratio-to-moving average method. Again no postsample observations 
were used in computing the seasonal indexes. Forecasts were reseasonalized before the 
errors were compiled. 

Procedures identical to Makridakis were used to compile postsample errors in this 
research. The three-parameter version of model (6)-(8) was used with deseasonalized 
data. To keep the results strictly comparable, Makridakis' original seasonal indexes 
were used. Parameters were selected from the triangular region in Exhibit 1 on the 
basis of minimum MSE (one-step-ahead). 

3.2. Comparisons to Holt's Linear Model 

Graphical comparisons to Holt's linear model, also based on deseasonalized data 
where necessary, are presented in Exhibits 2-4. Tables of forecast errors and computa- 
tional details are given in the Appendix. In the Exhibits, "Holt-D" is the generalized 
model (6)-(8) which allows damping of trends. "Holt-L" is the standard model (1)-(3) 
with a linear trend. As discussed in the Appendix, the Holt-L results are better than 
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EXHIBIT 3. Median APE by Horizon (1,001). 

those originally reported by Makridakis. The difference lies in the initialization 
procedure. Makridakis used backcasting to obtain initial forecasts whereas a simple 
linear regression on time was used in this work. 

In Exhibit 2, the mean absolute percentage error (APE) by forecast horizon for all 
1,001 series is plotted. Horizon zero refers to the fitted mean APE. At horizons of one 
or two steps ahead, there was little difference between the two models. As the horizon 
increased, Holt-D became substantially more accurate. 

Median APEs by horizon are shown in Exhibit 3 on an enlarged scale. The APE 
distributions were skewed left, a common finding in empirical studies, with median 
APEs about half the size of the means. There was little difference in medians through 
horizon 6, although Holt-D was more accurate beyond that point. 

Makridakis also analyzed a sample of 111 series taken from the population of 1,001. 
Overall comparisons between Holt-D and Holt-L were about the same in this sample, 
although there were important differences in accuracy on different types of data. The 
sample includes 20 yearly, 23 quarterly, and 68 monthly series. Exhibit 4 shows the 
mean APE (average over all horizons) by type of data within the 111 series. 

Most of the yearly series contained a strong trend. In the Holt-D model, the trend 
was damped (with 0 < 1) for only about 20% of the yearly series. Thus the average 
accuracy was about the same as Holt-L. In the quarterly and monthly series, trends 
were far more erratic. Holt-D improved accuracy by damping the trend more than 
70% of the time. 

26 - 

24- 

22- 

cn 20- 

o 18- 

o 16 

-j 14- 

12- 

o. 10 

z 8 

4 - 

2 

YEARLY QUARTERLY MONTHLY ALL DATA 

V71 HOLT-D HOLT-L 

EXHIBIT 4. Mean APE by Type of Data (1 11). 



FORECASTING TRENDS IN TIME SERIES 1243 

26- 

24- 

22- 

20 - 

18 - 

1 6 2 

E LEWANDOWS 
< 14C PARZEN 

12 

10- 

8- 

4- 

2- 

0 
0 1 2 3 4 5 8 8 12 15 18 

FORECAST HORIZON 

EXHIBIT 5. Mean APE by Horizon (11I1). 

3.3. Comparisons to Lewandowski and Parzen 

In the Makridakis study, Lewandowski was generally the best performer on the 
median APE criterion. However, the method did not yield a good mean APE. The 
reason was that the strategy of damping the trend in every time series resulted in some 
extremely large errors. Parzen's method behaved differently, giving a better mean APE 
than Lewandowski but a worse median. 

The Holt-D model is compared to Lewandowski and Parzen in Exhibits 5 and 6. 
Both exhibits give results for the sample of 111 series. The Lewandowski and Parzen 
results are taken from Makridakis et al. (1982). In interpreting the exhibits, it should 
be noted that the X-scale contains gaps beyond horizon 6 (Makridakis did not report 
the errors at horizons 7, 9-11, 13-14, and 16-17). 

In Exhibit 5, Holt-D gave a better mean APE than Lewandowski at all horizons 
through 15 steps ahead. Compared to Parzen, Holt-D did better at one step ahead, 
then about the same through 12 steps ahead. Thereafter Parzen was more accurate. 

In Exhibit 6 (median APE), Holt-D did better at one step ahead than both 
sophisticated methods, then about the same through 8 steps ahead. Thereafter, both 
sophisticated methods were more accurate. 

Thus the Holt-D model compared favorably overall to both sophisticated methods 
except at the longest leadtimes. Whether the forecasts from any of the three ap- 
proaches are of any practical value beyond say 12 steps ahead is a matter of opinion. 
It is perhaps asking too much of any time series method to forecast at that range. 
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4. Conclusions 

Although a linear trend is commonly assumed in time series forecasting, empirical 
research shows this is a reasonable assumption only at short horizons. As the horizon 
increases, a linear trend frequently overshoots the data. 

One alternative approach to trend extrapolation is Lewandowski's FORSYS system, 
which damps the trend in every time series according to the level of noise. This 
strategy appears to be overly conservative. When the time series actually contains a 
strong trend, Lewandowski's forecasts track well below the data at long horizons. 
Another difficulty with Lewandowski is that the method achieves good long-range 
performance at some cost in short-range accuracy. 

Another alternative is the Parzen methodology, which may be the most robust 
approach to time series forecasting reported to date. However, Parzen may be too 
complex for use in large forecasting systems. 

A third alternative is to modify Holt's linear exponential smoothing model with an 
AD-parameter. The result is a simple model structure which includes a variety of 
useful special cases. If the trend in the data is erratic, the model is based on the first 
differences of the data. The AD-parameter is fitted at a value less than one and damps 
the trend. When the trend is persistent, the model is based on second differences. The 
AD-parameter is fitted at a value near one and the model behaves much like Holt's 
linear model. On average, the model improves long-range forecast accuracy compared 
to models which assume a linear trend. This is achieved at no apparent cost in 
short-range performance. The model also compares favorably with Lewandowski and 
Parzen and should be suitable for routine use in large forecasting systems, such as in 
inventory control.' 

Appendix-Computational Details 

Initial forecasts for both the Holt-L and Holt-D models were computed from a simple linear regression on 
time, with the beginning level equal to the intercept and the trend equal to the slope. In the Makridakis 
study, initial forecasts were selected by backcasting, starting with the level equal to the last observation and 
the trend equal to the average difference between the last four observations. This procedure frequently 
resulted in negative initial forecasts which in turn distorted the model-fitting process. Exhibits 7 and 8 
compare Makridakis' results to the Holt-L and Holt-D models. 

Exhibit 9 shows the effects of parameter choice on the Holt-D model. The mean APE for the three regions 

EXHIBIT 7. APE Comparisons (1,001). 

Mean APE Median APE 

Forecast Mak. Mak. 
Horizon Holt-D Holt-L Holt Holt-D Holt-L Holt 

1 8.3 8.7 8.7 4.2 4.5 4.5 
2 10.8 10.9 11.0 5.3 5.5 5.3 
3 12.1 12.8 13.3 5.9 6.1 5.6 
4 13.0 14.1 15.2 7.2 6.9 7.3 
5 15.7 16.9 19.1 8.1 8.2 8.1 
6 17.9 19.7 21.6 9.3 9.1 9.2 
8 17.7 20.0 24.8 9.0 9.5 9.8 

12 16.7 19.9 23.9 9.3 10.2 9.9 
15 21.0 23.5 33.7 11.6 13.2 12.2 
18 21.7 24.8 48.3 11.9 13.0 13.6 

Overall 16.2 18.1 22.9 8.4 8.8 8.8 

'This research was supported by the Navy Regional Data Automation Center, Norfolk, Virginia and by 
the Navy Fleet Material Support Office, Mechanicsburg, Pennsylvania. The second author is also pleased to 
acknowledge the support of a National Research Council Associateship at the Naval Postgraduate School 
where his share of this work was carried out. 
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EXHIBIT 8. APE Comparisons (111). 

Mean APE Median APE 

Forecast Mak. Mak. 
Horizon Holt-D Holt-L Holt Holt-D Holt-L Holt 

1 7.6 8.0 7.9 2.8 3.2 3.4 
2 9.7 10.8 10.5 5.3 5.5 5.0 
3 11.5 12.9 13.2 5.7 6.9 6.4 
4 13.1 14.6 15.1 7.3 7.5 8.1 
5 14.5 17.1 17.3 7.3 7.4 7.4 
6 15.9 19.1 19.0 9.5 8.7 9.0 
8 16.6 21.0 23.1 9.5 11.1 10.6 

12 13.6 19.0 16.5 7.9 7.5 7.4 
15 29.0 31.9 35.6 12.7 14.3 12.4 
18 29.5 32.5 35.2 15.5 13.6 15.0 

Overall 16.1 18.9 19.7 8.2 8.6 8.7 

EXHIBIT 9. Effects of Parameter Choice on the Holt-D Model (111). 

Mean APE Median APE 

Forecast Number of Parameters Number of Parameters 
Horizon 3 2 2(DLS) 3 2 2(DLS) 

1 7.6 7.6 7.8 2.8 2.9 3.0 
2 9.7 9.7 9.7 5.3 4.6 5.2 
3 11.5 11.3 11.6 5.7 5.2 5.5 
4 13.1 13.1 13.2 7.3 7.6 8.0 
5 14.5 15.0 15.0 7.3 7.8 7.4 
6 15.9 16.4 16.7 9.5 9.8 9.2 
8 16.6 17.6 18.1 9.5 9.9 11.2 

12 13.6 14.1 15.0 7.9 7.6 7.7 
15 29.0 30.4 32.4 12.7 12.8 12.9 
18 29.5 30.4 31.8 15.5 15.6 15.4 

Overall 16.1 16.5 17.0 8.2 8.5 8.6 

of choice (see Exhibit 1) was about the same through 6 steps ahead. Thereafter, the three-parameter model 
was more accurate, although the differences were small. 

Parameters in the Holt-L and Holt-D models were selected by a grid search. To replicate Exhibits 7-9, the 
following routine should be followed. For Holt-L, compute the fitted one-step-ahead MSE for four 
combinations of parameters (0.33 and 0.67 for a and y). Next, compute the MSE at points ?0.17 around 
the best combination and change the parameters if a better MSE is found. Continue the search from this 
point with progressively smaller values (? 0.08,0.04,0.02,0.015,0.005) until the change in MSE is less than 
0.001. Note that the parameters are allowed to reach 0 or 1. The same procedure should be used for Holt-D 
except that eight combinations of parameters are needed initially in the three-parameter version. 

The computer program used in this research was written in BASIC for the IBM Personal Computer. Run 
time for the Holt-D model with a compiled program was about 40 minutes for the 111 series and about 5 
hours for the 1,001. The times are for the standard 8088 CPU with the data stored on floppy diskettes. The 
1,001 series are available on tape from the International Institute of Forecasters (IIF), c/o Faculty of 
Management, McGill University, Montreal, Canada H3A IG5. Diskettes (formatted with IBM PC DOS 1.1) 
of the time series were contributed to the IIF and may be obtained from that organization. 
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