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Evolutionary Operation of the 
Exponential Smoothing Parameter: Revisited 

INTRODUCTION 

CHOOSING PARAMETERS for exponential smoothing 
models can be a difficult problem. Simulation with 
historical data (ex ante testing) is the most objective 
method of parameter selection. However, simulation 
may be infeasible in large forecasting systems. Simu- 
lation may also be of  little value for time series with 
limited history or for nonstationary series. 

Because of  these problems, many practitioners choose 
parameters subjectively, considering the tradeoff be- 
tween model stability and the response rate to changes 
in the time series. For example, Montgomery and John- 
son [19] suggest a range of  0.1 to 0.3 for the parameter 
:t in the single smoothing model. An ~, of  0.1 gives stable 
forecasts but a poor response to sudden changes in the 
level of  the series. Increasing ~ to 0.3 makes the forecasts 
more sensitive to noise but gives a better response to 
changes in the series. 

Recommended values for double smoothing are 
:c =0.1 to 0.2 (see Brown [41). Suggestions for other 
types of smoothing models can be found in Gardner and 
Dannenbring [12], McClain [17] and McClain and 
Thomas [18]. Although the validity of  these 'standard" 
parameters is questionable (Chatfield [6]), they are 
widely used. 

The problem of parameter selection can be avoided by 
using an adaptive smoothing model. These models are 
designed to improve performance by letting the smooth- 
ing parameter vary automatically, as a function of recent 
forecast accuracy. The parameter in an adaptive model 
should be moderate during periods of  stability, but 
should increase in response to changes in the series. 

There have been at least five empirical studies claiming 
accuracy advantages for adaptive smoothing models. 
Ekern [10. 11] reexamined four of these studies--by 
Bunn [5], Dennis [9], Hollier et al. [ 13] and Whybark [2 t]. 
Ekern concluded that these studies did not present any 
convincing evidence in favour of  adaptive smoothing. 

The fifth study in favor of  adaptive smoothing was by 
Chow [7]. who used the evolutionary operation meth- 
odology developed by Box [2] to control the smoothing 
parameter. Chow reported that the adaptive model was 
superior to a model with a fixed parameter on 68 of  69 
time series. Chow's study has been cited by numerous 
authors. Examples of citations can be found in the 
forecasting texts by Armstrong [11, Makridakis and 
Wheelwright [15] and Montgomery and Johnson [19]. 

This paper reexamines Chow's study and points out 
an error in the model formulation for smoothing a linear 
trend. The error biased the performance comparisons in 
favor of  the adaptive model. 

In the next section, the smoothing formulations for a 
linear trend are reviewed. The following sections discuss 
Chow's model formulations, adaptive control system, 
and performance comparisons. Computational results 
are given using correct model formulations on four time 
series still available from the Chow study. 

EXPONENTIAL SMOOTHING 
WITH A LINEAR TREND 

If the time series has a relatively constant mean, single 
exponential smoothing is an appropriate forecasting 
model. The single-smoothed average is 

S, = ",X, + (1 - ~)S,_ t, (1) 

where X t is the time series value in t. The smoothing 
parameter is :~, where 0 < ", < I. The forecast for t + I 
is simply S,: 

F,  ~ ~ = S, .  (2 )  

If single smoothing is applied to a series containing a 
linear trend, the forecasts will lag the data. The gener- 
ating process for a linear trend is 

X~=a +b t  +E,. (3) 

The forecasts from equations (1) and (2) will lag X, by 
an expected value of  

Proofs are given in Brown [3, 41. 
There are several equivalent models which compen- 

sate for the lag in single smoothing and give unbiased 
forecasts, The first model was developed by Brown [3]: 

S, = ~tX,+(I - 7)S,_ t, (4) 

7", = ~ ( S ,  - S , _  ~) + (I  - ~ ) T , _  ~, (5 )  

F ' + t = S ' +  T 7",+7",. (6) 

The first two terms in equation (6) give a local estimate 
of  the intercept of the trend line (the origin of  time is 
shifted to the end of the current period, t): 

The last term in equation (6) is a local estimate of  the 
slope of  the trend line: 

6 = T,.  (8 )  

Brown's double smoothing [4] is equivalent to the 
1959 model and is encountered more frequently in the 
literature. The double smoothing model is written: 

S, = :~X, + (1 - ~)S,_ L. (9) 

s ; '  = ~ s ,  + ( l  - ~ ) s 7  - l ,  ( ] 0 )  

F , + t = 2 S , - S ; "  + (S , -S '~) .  (II)  [ - x  

The local estimates of the slope and intercept are: 

a = 2 s ,  - s , ,  ( i  2)  

( S , - S 7 ) "  (13) 
l - z ~  
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FIG. 1. Time series used in replication. 

Brown's 1959 and 1963 models can be rearranged to 
yield another equivalent formulation, which is somewhat 
easier to use: 

S,=S,_I  + Tt_ i + ~t(2 - ~t)e,. (14) 

T, = T, _ l + ~ '-e,. (15) 

F , . ,  = S , +  T,. (16) 

Other model formulations for smoothing a linear 
trend are reviewed in McClain and Thomas [18] and 
Montgomery and Johnson [19]. 

CHOW'S MODEL FORMULATIONS 

Chow compared two versions of Brown's 1959 
model--one with a fixed ~t and one with an adaptive a. 
However, he omitted the last term (T,) from the forecast 
equation (6). 

Euolutionary operation of the smoothing parameter 

The evolutionary operation system used by Chow 
requires that three forecasts be computed each time 
period. The first is computed with a base or 'normal'  
value of ~t, and is the forecast used by management. The 
other forecasts are computed with ~t u = ~t + 0.05 and 
~t L = zt - 0.05. If the current absolute error using :t is tess 
than the absolute error for ~u and ~q. no change is made. 
If the absolute error from ~t u or ~t L is lower, ~ is reset to 
~tt or ~L" New values for ¢ttt and "t  are computed around 
~t and the process begins anew. 

Chow recommends a starting base ~t =0.10. There- 
after, constraints are set on ~t such that 0.10 < ~ < 0.90. 
Thus the minimum : q = 0 . 0 5  and the maximum 
~t, = 0.95. 

The smoothed mean absolute deviation (MAD) of 
errors can be used instead of the current absolute error 
as the criterion for changing :t. Chow found no 
difference in forecasting performance between the MAD 
and current error criteria. 

Evaluation of Chow's perJbrmance comparisons 

The adaptive ~t was compared to a fixed ~, = 0.1 on 69 
time series. The performance measure used appears to 
have been the mean squared error (MSE) (the paper 
discusses the "mean forecasting variance'). The adaptive 
model was superior on 68 of 69 series--on the one 
exception, the difference was small. 

These results seem too good to be accepted without 
serious questioning on several points. First, consider 
stable time series with a constant mean. which were 
among the series tested by Chow. An adaptive ct should 
never do better than a moderate fixed ~t, since there is 
simply no change in the data for the model to follow. 

Second, consider a series with a trend. Both of Chow's 
models are biased low in the presence of any trend, 
regardless of the smoothing parameter. The adaptive ~t, 
using Chow's incorrect formulation, will increase and 
offset some of this bias. But the correct fixed-parameter 
model will offset all of the bias. 

Third, Chow's choice of parameters for the fixed ~t 
model might be improved. To get a better response to 
changing conditions in the series, one could choose to 
smooth with ct = 0.2 or more. rather than ~t = 0.1. 

Replication 

Four time series remain from those tested by Chow. 
The four series are plotted in Fig. I. The first three series 
are available in Brown ([3], Tables 1.1-1.3). The last 
series is from Chow ([7], Table 2). 

Series 1 is random noise about a constant mean. Series 
2 is highly autocorrelated, and therefore difficult to 
forecast with an exponential smoothing model. Series 3 
follows a horizontal path for the first half of the series 
and then trends upward sharply. Series 4 fluctuates 
wildly for the first half of the series and then drops off 
rapidly to a constant level with little noise. 

MSE results for these series are given in Table I. The 
first two columns repeat Chow's results for the adaptive 
model based on the current absolute error and the fixed 

= 0.1 model. The last three columns list the MSE's for 
the correct model formulations. In the replication, all 
models were started under the most naive assumptions, 
with S o = X~ = F I, and T o = 0. These starting conditions 
should favor the adaptive model. 

The adaptive model did worse in the replication than 
in Chow's study on every time series. This may be 
suprising except on series 1, where the extrapolation of 
any trend is unwarranted. The difficulty may be in 
starting conditions, the number of periods used to 
compute the MSE, or in the way Chow's model was 
interpreted in the replication. In some cases, the adaptive 
model indicated a shift to :c = 0.05 was desirable. This 
shift was not made (the MSE was computed using the 
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Chov, results Replication--correct models 
Series . . . .  Adapti~et __ FLied ~ =0. t _ ,~dapti~e ~_ F!xed x = 0.! . . . .  F_i:~ed ~ --_().2_ 

[ 534 547 692 587 6A8 
2 130 371 156 356 224 
3 798 1068 979 851 975 
4 3.9 x 106 8.9 × 10 ~' 4.4 × l0 ¢' a.8 x l0 ~ 4.1 x 10" 

~Adaptive model based on current absolute error. 

errors from ze = 0.11, since x L would become zero. This 
appears to be the way Chow used the model. 

On Series 1, both fixed :e models do better than the 
adaptive model, as should be expected. On Series 2, the 
adaptive mode[ has a large advantage, again as should 
be expected. The adaptive :e stays in the range of  0.7 to 
0.9 during most  of  this series, indicating the need to 
consider an A R I M A  model. 

On Series 3, the fixed x = 0.I model has an advantage. 
This is due to the long period of  stability during the first 
half of  the time series. Both the adaptive x and the fixed 
x = 0.2 models do better over the second half of  the 
series, after the trend begins. 

On Series 4, Notice that the use of  the correct model 
for :¢ = 0.1 reduces the MSE by almost half. Smoothing 
with a fixed ~ = 0.2 does better than the adaptive model. 

C ONC L US IONS  

It is impossible to generalize t¥om only tour time 
series. Furthermore,  the results for the four series could 
change with more analysis. The performance of  the fixed 

models should improve with better starting values and 
more refined parameters. The adaptive model might be 
improved with the M AD rather than the current error 
as the criterion for changing ~. However, the results with 
the four series do make it seem unlikely that the adaptive 
model would have the overwhelming advantages re- 
ported by Chow on the rest of  his sample. 

Three large empirical studies have found little 
difference between adaptive and fixed-parameter 
smoothing models--see Dancer and Gray [8]. Mak- 
ridakis and Hibon [14] and Makridakis et al. [16]. 
Considering this review of  Chow's  study and the reviews 
by Ekern [10, I1], we conclude that there is still no 
empirical evidence that adaptive models are more accu- 
rate than models with fixed parameters. 

These comments  should not be taken to mean that 
adaptive models are of  no value. Considerations other 
than accuracy are important  in most  forecasting systems. 
As Chow points out, adaptive models may reduce the 
need for manu~l intervention in the forecasting system. 

Adaptive models also eliminate the need to bother 
with parameter selection. It should be noted that Chow's  
adaptive method is easier to use than most such meth- 
ods, since it requires no prior information about the time 
series. This is an important consideration for time series 
with limited history. The Trigg and Leach method 
requires some estimate of  the M A D  to start up the 
forecasting model, while the Whybark method requires 
an estimate of  the standard deviation of the forecast 
errors. 
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