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USING OPTIMAL POLICY SURFACES TO ANALYZE 
AGGREGATE INVENTORY TRADEOFFS* 

EVERETTE S. GARDNER, JR.t AND DAVID G. DANNENBRING$ 

The marginal cost information needed to implement traditional inventory models is not 
likely to be available in practice. The most important inventory management issues in 
practive involve aggregate objectives and constraints while the richest theoretical models deal 
with single item management. To help resolve these problems, the authors propose that 
inventory decisions be conceived as policy tradeoffs on a three dimensional response surface 
showing the optimal relationships among aggregate customer service, workload, and invest- 
ment. We show that any optimal management decision must result in a point located on the 
surface. Computational results show that the methodology suggested can make improvements 
in management policy in four inventories that total more than 78,000 line items. 
(INVENTORY/PRODUCTION-PARAMETRIC ANALYSIS; INVENTORY/PRO- 
DUCTION-STOCHASTIC MODELS; MILITARY-LOGISTICS) 

1. Introduction 

In the authors' opinion, a serious gap exists between theory and practice in 
inventory management. One reason is that the marginal ordering, holding, and 
shortage costs typically assumed in the theory are difficult, if not impossible, to 
measure in practice [1], [4], [7], [9], [13], [21], [22], [24], [27], [29]. For example, in 
Ziegler's survey [29], he concludes that all the suggested approaches to determining 
ordering costs in the accounting literature result in average rather than marginal costs. 
The holding cost in practice is mostly composed of the cost of capital, which is a 
highly subjective measure [1], [14], [16], [21], [29]. The use of shortage costs in 
inventory models has not been adopted by most practitioners [1], [3], [4], [13], [21], 
[22], [29] since there is no basis for their measurement in accounting methodology [29]. 

Another problem in practice is that inventory theory has traditionally emphasized 
single-item models which provide insufficient insights for the management of multi- 
item inventories. Most practitioners are primarily concerned instead with aggregate 
inventory control [1], [2], [18], [21], [27] to meet specific aggregate objectives or 
constraints for customer service, workload, and investment. 

This paper presents an approach to decision making in inventory systems that 
avoids cost measurement problems and incorporates aggregate objectives and con- 
straints. While traditional theory is based on the objective of cost minimization we 
propose that inventory decisions be conceived as policy tradeoffs on a three- 
dimensional response surface, the "optimal policy surface." The axes of the surface 
are measured in aggregate terms: the percentage of inventory shortages as a measure 
of customer service; the workload in terms of the number of annual stock replenish- 
ment orders; and total investment (the sum of cycle and safety stocks). The surface is 
optimal in the sense that the number of shortages at any point on the surface is 
minimal for the corresponding combination of workload and investment values. 
Aggregate inventory decisions are defined as the selection of some combination of the 
three variables. We show that decisions resulting in combinations of variables that do 
not lie on the surface cannot be optimal, regardless of the underlying cost structure of 
the firm. 

* Accepted by Martin K. Starr; received June 19, 1978. This paper has been with the authors 5 months 
for 2 revisions. 
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A similar theoretical construct for the case of deterministic demand, the "optimal 
policy curve," was originally developed by Starr and Miller [24]. We review their ideas 
in the next section, and then generalize to the stochastic case. Model formulations and 
solution algorithms are presented, with computational results for four inventories 
drawn from a large military distribution system. The results show that the concept of 
the optimal policy surface can be a useful practical tool for inventory decisions. 

2. The Optimal Policy Curve 

When demand is deterministic, there is an underlying set of optimal relationships in 
any inventory between aggregate cycle stock investment and workload. This set of 
relationships may be called an "optimal policy curve." An example is shown in Figure 
1, which was derived with Lagrangian multipliers [24], and gives the minimum cycle 
stock investment for a specified workload or vice versa. Points located below the 
curve are infeasible combinations of investment and workload, while points above the 
curve are nonoptimal. For example, a management decision to operate at point A in 
Figure 1 represents an investment of $350,000 and a workload of 5,000 annual orders. 
But at point B, workload can be reduced to 3,000 for the same investment. An 
alternative is to move to point C, where the workload is still 5,000 but investment has 
been reduced to $225,000. 
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FIGURE 1. The Optimal Policy Curve for Deterministic Demand. 

The optimal policy curve is a powerful concept, since it shows exactly how 
workload and investment may be exchanged for each other. "The executive, with his 
intimate knowledge of the circumstances of the company, can often quickly converge 
on the optimal point on the curve for the company without having had to convert his 
knowledge into the form of carrying and ordering costs-something which can often 
be done only badly if at all." [24]. There is considerable evidence that the concept of 
the optimal policy curve has been successful in practice. A simplified computational 
procedure to derive the optimal policy curve, the "Limit" technique, was developed by 
Plossl and Wight [21] for the American Production and Inventory Control Society, 
and the procedure is part of the body of knowledge required to gain certified 
practitioner status in that organization. Another method of deriving the optimal 
policy curve was developed by Prichard and Eagle [22]. Other variations of determin- 
istic inventory models which link several items with investment constraints may be 
found in [11] and [12]. 
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3. The Optimal Policy Surface 

With stochastic demand, management decisions are much more complex. Cycle and 
safety stock investment decisions are interdependent for each line item. Interactions 
also exist between items, since some aggregate mix of cycle and safety stock invest- 
ment must be selected and allocated across the items stocked. To treat these com- 
plexities, the optimal policy concept must be extended to three dimensions, as 
illustrated in Figure 2, which was constructed from a sample of 500 line items in a 
military distribution system. The vertical axis measures customer service in terms of 
the percentage of annual customer requisitions which are backordered (short). De- 
pending on management objectives, various other measures could be used for the 
vertical axis, such as the percentage of sales dollars short or the number of shortage 
occurrences. The investment axis in Figure 2 is stated as the sum of aggregate cycle 
and safety stocks, while workload is the number of annual stock replenishment orders. 

Figure 2 is an optimal policy surface, since it gives the minimal or optimal level of 
requisitions short for the range of workload and investment shown. For any one of the 
three variables, the surface also shows the range of optimal combinations of the other 
two. If management chooses to operate with an aggregate investment of $900,000, the 
surface shows that requisitions short will vary from 6.13% to 3.42%, depending on the 
workload decision. If a workload of 3,000 annual orders is selected, requisitions short 
will vary from 0.75% to 3.71%, depending on the investment decision. 

The optimal policy surface provides a sound theoretical basis for aggregate inven- 
tory decisions in this sense: any optimal decision must result in a point located on the 
optimal policy surface. Any point located below the surface is infeasible, and any 
decision that results in a point located above the surface can be improved by moving 
back to the surface. 

To illustrate, current management policy for the inventory sample in Figure 2 
results in the following combination of variables: workload = 3,586, invest- 
ment = $1,367,000, and requisitions short = 0.89%. For the same workload and invest- 
ment coordinates, a modest reduction in requisitions short could be made to a level of 
0.69%. However, the workload could be cut to less than 2,300 annual orders (a 

6.31% 

'* Requisitions 

FIGURE 2. The Optimal Policy Surface for Stochastic Demand. 
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reduction of 35%o) and retain current levels of requisitions short and investment. If the 
investment budget is tight, another choice is to cut investment by about 8.5% to 
$1,250,000 without changing the other two variables. Other points on the surface 
would yield simultaneous improvement in all three variables over current policy. 

Since customer service objectives depend on a host of complex policy issues in 
practice [22], the optimal policy surface is useful in quantifying exactly what the firm 
must pay in terms of workload and investment to meet these objectives. Although cost 
information is not incorporated in Figure 2, any cost information which the decision- 
maker is willing to use can be considered after the surface has been constructed. The 
key point is that the decision-maker does not have to specify marginal cost estimates 
in order to see the range of tradeoffs in the inventory. 

Most of the tradeoffs displayed by the optimal policy surface are straightforward. 
With a fixed workload, increases in investment simply add safety stock and thereby 
reduce requisitions short. At a fixed investment level, increases in workload result in 
an exchange of cycle stock for safety stock, again leading to a reduction in requisi- 
tions short. It should be noted that these comments apply to the aggregate behavior 
only; the effects on individual items can vary considerably. 

Most of the axis limits of the surface are also straightforward. At infinite (uncon- 
strained) investment levels, there would be enough safety stock so that the percentage 
of requisitions short would approach zero for any workload constraint. As investment 
levels are reduced, safety stock would eventually disappear, so that for a given 
workload the lowest feasible investment level would be the same as that for the 
deterministic optimal policy curve. At this limit, requisitions short would, of course, 
be very large. For a specific investment level there is a similar lower limit on 
workload, without safety stock, equivalent to that found with the optimal policy 
curve. 

It should be recognized that if budget restrictions are particularly severe, it would 
be necessary to consider the possibility that the aggregate safety stock level is 
negative. The model formulated here does not treat this possibility although suitable 
modifications could accomplish this consideration. 

The effects of increases in workload are more complex. The right-hand edge of the 
surface is the limit of effective constraint on aggregate workload, since a solution with 
an unconstrained workload will always provide fewer expected requisitions short than 
would be the case for workload equality constraints larger than the edge. The reason 
that this limit exists has to do with the two ways in which workload impacts on 
requisitions short. With a fixed investment constraint, increases in workload are 
equivalent to increases in the number of exposures to risk of stockout. On the other 
hand, the increased workload leads to a change in the mix of cycle and safety stock, 
the reduced need for cycle stock being channeled into increased safety stock. 

Thus, as workload increases, the increase in exposure risk tends to increase 
expected requisitions short while the change in investment mix works in the opposite 
direction. The net effect is favorable for low to moderate workload levels, but 
eventually the effect of exposure risk overwhelms the protection afforded by the 
increased safety stock. Thus we can refer to the right-hand edge of the surface as the 
edge of optimality since any further increase in workload would only serve to increase 
requisitions short. It is certainly feasible to choose workload levels beyond the edge, 
but never optimal. 

In the next section, we show how to derive the edge with a Lagrangian model which 
minimizes the number of shortages subject only to an investment constraint. Since 
workload is unconstrained, the optimal workloads found by the model serve to define 
the edge of optimality. Points to the left of the edge can be derived by enriching the 
same model with a workload constraint. Although details are given only for the 
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requisitions short objective function, extensions to other common objective functions 
can be made by following the same computational scheme [9]. 

4. Locating the Edge of Optimality 

To locate any single point on the edge of optimality, the objective function is: 

minlZ = E mIRXi if(x) dx (1) 
i Qi JR( m f I 

subject to the investment constraint 

Qi +SI (2) 

where 
Z = expected annual number of customer requisitions backordered or short, 

Di= annual sales in dollars for item i, 
Qi = order quantity in dollars for item i, 
R, =reorder point in dollars (sum of safety stock plus leadtime demand stock) for 

item i, 
Xi =leadtime demand in dollars for item i, 
mi= customer requisition size in dollars for item i, 

f(x) =probability density function for leadtime demand, 
Si = safety stock in dollars, for item i, and 
I = investment constraint in dollars. 

The assumptions in this formulation are that the length of the leadtime is constant, 
and that the customer requisition sizes for each line item are constants and are 
independent of the level of demand. For this example, we shall also assume that 
leadtime demand is normally distributed, although the solution procedure applies to 
other distributions as well. 

The next step is to form the Lagrangian function, L: 

D. 
X(3)Ri L = 

:2 M J f(x) dx+ XILE 2 +Sj)1] (3) 

where XI = the Lagrangian multiplier. 
Differentiating with respect to Qi, Si, and XA, we obtain the first order conditions: 

aL - Di r0 R" dXi 
aQ Q=im J(Xi - Rj)f(x)dx + 0 (4) 

Qim JR f(x) dx + X1 = 0, and (5) 

aA= ( 2 
1- 

+ si.- I= O. (6) 

Since all model functions are convex, we know that any solution to the first order 
conditions will be an optimal solution. Unfortunately, there is no direct solution for 
any of the -variables in the problem. The approach followed here is essentially the 
method of successive approximations which iteratively searches for the simultaneously 
optimal values of A, and the Q1 and Si for each line item. 
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Other formulations of stochastic- models linking several items with average invest- 
ment constraints have been proposed by Daeschner [5], Gerson and Brown [10] and 
Schrady and Choe [23]. To find the optimal solution to these Lagrangian models, the 
authors proposed either trial and error search [5], [10] or conversion of the problem to 
a sequence of unconstrained optimization problems using the SUMT technique [23]. 
Unfortunately, these procedures prove to be tedious and expensive in large applica- 
tions [9], [23] and become even more difficult when the present model is enriched with 
a workload constraint, as shown in the next section. Hadley and Whitin [12] have also 
emphasized the computational difficulties associated with constrained stochastic in- 
ventory models. 

The method of successive approximations (see [25] for a discussion) can be used to 
converge rapidly on the optimal value of XI which, in turn, can be used to derive the 
optimal Qi and Si values for each line item in the inventory. 

Before describing the search algorithm, some simplifying notation is introduced. Let 

Pi = f(x) dX, (7) 

Ei = f (Xi-Ri )f(x) dx, (8) 

Fi = Di/ m, 9 

Pi is the probability of a stockout during one order cycle. Ei is the partial expectation 
of demand or the expected number of dollars short per order cycle. Fi is the annual 
frequency of demand for each line item. 

ComputeAh using (10), withY-S O and P. = 0.5. 

Compute Q. using (11), with E. = 0.398942a*, which 

corresponds to zero safety stock. 

- Compute P., with (12). Requisitions 
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Although not derived here, simple algebra provides the equations used in the 
search: 

&k = E3FiPJ2(I- Si), (10) 

i = 2F1E /i , ( 11 ) 

Pi = XIQ1/ F> (12) 

A summary of the steps in the search algorithm using equations (10)-(12) is shown in 
Figure 3. We begin with an initial assumption of zero safety stock for each line item, 
which allows us to use (10) to derive an initial XI, which, in turn, determines the initial 
Qi's using (11). Equation (12) is next used to calculate appropriate stockout probabili- 
ties, Pi, which then determine specific safety stock levels, Si. This process is repeated 
until the investment constraint is fulfilled, iteratively updating XI, Qi, Pi, and Si. 

The search algorithm summarized in Figure 3 has been run more than 100 times on 
data sets ranging in size from 500 to more than 40,000 line items. In every case, the 
model converged to within 1% of the investment constraint in twelve iterations or less. 
CPU time in Fortran, Level H, on the IBM 370/155 has been modest, averaging only 
0.36 seconds per iteration per 1,000 line items. An example of the way the search 
algorithm behaves is given in Figure 4. The data used were the same as those used to 
derive the optimal policy surface in Figure 2. The model assumed an investment 
constraint of $1,367,000 and converged to the minimum requisitions short value of 
0.60% in 9 iterations. (This point corresponds to the point at the lower right corner of 
Figure 2.) The curved path followed by the model is representative of all the data sets 
tested. To complete the edge of optimality, the model was run four more times with 
the investment levels shown in Figure 2. 

5. Locating Interior Points on the Optimal Policy Surface 

To locate any interior point on the surface, (to the left of the edge of optimality), a 
workload constraint is added to (1) and (2): 

D. 
2 Q = W (13) 

where W = workload constraint in number of annual orders. 
The Lagrangian function becomes: 

Q f(Xi -Ri )f(x) dx 
i Qimi J 

+ Aw( Q-W) 2 ( 2 XI +S (14) 

Solution of this model leads to identical equations for X. and Pi as derived for the 
simpler model, equations (10) and (12), respectively. To these are added the optimal 
condition for Xw, 

X w ;ts2 2' E | (15) 

and a modified optimal equation for Q1, which incorporates the effects of both the 
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investment and workload constraints, 

Qi-=2(FiEi+XADi)/X1 . (16) 

The search strategy employed for this model is similar to the previous case and is 
outlined in Figure 5. As before, it is assumed initially that no safety stock is 
maintained for any of the items. This permits, using (10), direct calculation of an 
initial approximation for X,. Note, however, that the equations for Xw and Qi are 
interdependent, preventing their use in the initialization phase. Rearranging equation 
(12), however, we can derive an equation for Qi which does not require an estimate of 

xw: 

Qi = FiPi/XJ = 0.5F1/Xj. (17) 

The Qi's based on (17) can then be used to provide an initial estimate of Xw from 
(15). Thereafter the search progresses by iteratively updating values for Qi, Pi (and 
correspondingly S1), XI, and Xw, using equations (16), (12), (10), and (15), until both 
the workload and investment constraints are fulfilled. 

The model with both constraints has also been run on more than 100 data sets, and 
has always converged to a point within 1% of both constraints within 30 iterations. 

Compute using (10), with S. = 0 and P = 0.5. 

Compute Q using (17), with P. = 05. 

ComputeA using (15), with E. = 0.398942q 

corresponds to zero safety stock. 

4 
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Both 
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RecomputeA Iwith (IO). | 
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FIGURE 5. The Workload- and Investment-Constrained Search Algorithm. 
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CPU time has averaged about 0.41 seconds per 1,000 line items. An example of the 
way the search behaves is given in Figure 6, with a workload constraint of 3,586 
orders and an investment constraint of $1,367,000 (refer to those coordinates in 
Figure 2). After seven iterations, the model reached a requisitions short level of 0.98%. 
Between that point and the optimum of 0.69%, the model required an additional 23 
iterations (which were not plotted individually). 

Requisitions 
Short 

6 

(Starting Point) 
5 06 29% 

4 

34.50 

2 

V0 ~~~~~~1.90 

1.40 

1.13 

0.98 

- (Stop-optimal) 

FIGURE 6. Convergence of the Workload- and Investment-Constrained Search. 

There are some interesting analogies between the order quantity and safety stock 
expressions in (16) and (12) and those that would be derived using a well-known 
classical model with a cost-based objective function. To illustrate, let C0 be the 
marginal ordering cost, Ch be the annual inventory carrying cost expressed as a 
percentage of dollar value, and C, be the shortage or penalty cost per customer 
requisition short or backordered. Then the total annual costs for the ith line item are: 

C0Di Ch Qi C Dirc 
TCi 

= Q 
i+ +ChS + i A 

(Xi- R.)f(x)dx. (18) 

Solution of this model using classical optimization techniques requires that 

Qi= F2[ E + (Co/Cs )Di1/(Ch/CS) (19) 

and 

Pi = (Ch/Cs)Qi/F7. (20) 

A simple comparison of (19) and (20) with (16) and (12) shows that they are 
equivalent provided that 

CO/ CS = XwI (21) 

Ch/C5 = XI (22) 

Therefore, one way in which the constrained models can be interpreted is that the 
Lagrangian multipliers act as surrogates for the marginal cost information. 
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6. An Application of the Models 

The models were tested with a sample of 78,180 line items representing the 
complete inventories at four of thirty stock points in a military distribution system. 
The line items used in the test represent about 20% of the line items stocked in the 
system. Order quantities in the system are currently computed with a standard EOQ 
model. Safety stocks are computed independently of order quantities with a 
Lagrangian model that minimizes the number of requisitions short for a given safety 
stock budget. Trial and error procedures are used to: (1) find the single Lagrangian 
multiplier that allocates safety stock, (2) adjust aggregate workload at each stock point 
to constraints imposed by personnel budgets, and (3) adjust the sum of cycle and 
safety stock investment to constraints imposed by budget considerations. 

The first step in the test was to find the point on the optimal policy surface (the 
value of requisitions short) that corresponds to the current workload and investment 
constraints for each inventory. These results are compared to current policy in Table 
1. In every case, current policy could be improved by moving to a position on the 
optimal policy surface. The results shown in Table 1 are expected values, computed 
with the assumptions and approximations discussed above in the sections on model 
development. Since these assumptions and approximations are identical to those used 
in the current inventory system, the results are strictly comparable. In practice the 
actual requisitions short achieved using the current policies is normally somewhat 
higher than that predicted by the model. This difference in predicted and actual 
performance is due to a number of factors, including the exercise of local control by 
stock point managers and the existence of line items currently in an out-of-stock 
status or which have relatively poor current stock positions. Further exploration of the 
surface showed that workload cuts averaging 25% could be made at each stock point 
without changing current investment or requisitions short. Some reductions in invest- 
ment could also be made for the existing workload and requisitions short. 

TABLE 1 

Comparison of Current Policy to the Optimal Policy Surface 

Expected Value of 
Requisitions Short 

Line Current 
Stock Items Current Optimal Minus 
Point Stocked Policy Policy Optimal 

1 12,262 6.72% 0.78% 5.94% 
2 5,039 8.49 2.35 6.14 
3 43,882 1.55 0.45 1.10 
4 16,997 3.28 0.88 2.40 

There appear to be two related reasons for these potential improvements. First, the 
optimal policy surface is built up from simultaneous solutions for order quantities and 
safety stocks for each line item. In current policy, these two elements are computed 
independently of each other. Since standard deviations of leadtime demand in the 
system are relatively large, we rely on Groff and Muth's conclusion [20] that 
simultaneous solutions should give better results. Second, the surface gives a better 
aggregate mix of cycle and safety stock investment than current policy. In current 
policy, the aggregate mix is roughly 40% cycle stock and 60% safety stock. These 
percentages are reversed for the corresponding workload and investment coordinates 
on the optimal policy surface. 
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7. Conclusions 

Given the difficulties in measuring the traditional inventory costs and the strategic 
advantages of exploring aggregate inventory tradeoffs, we propose that inventory 
model-builders bypass the use of marginal costs and work directly with those 
aggregate variables that can be measured-the number of inventory shortages, work- 
load, and investment. Since the response surface that shows the relationships among 
these variables is optimal, we can state that management decisions should result in 
points located on the surface. This statement is true, regardless of the particular cost 
structure of any firm, and provides a sound theoretical basis for decision-making. If 
objective cost information is available, it can be considered after the surface is 
constructed. The computational results presented show that the models used to derive 
the optimal policy surface are efficient, and could make improvements in one 
inventory system. 
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