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a b s t r a c t

Coordinating procurement decisions for a family of products that share a constrained resource, such as an
ocean shipping container, is an important managerial problem. However due to the problem’s difficult
mathematical properties, efficient and effective solution procedures for the problem have eluded
researchers. This paper proposes two heuristics, for the capacitated, coordinated dynamic demand lot-
size problem with deterministic but time-varying demand. In addition to inventory holding costs, the
problem assumes a joint setup cost each time any member of the product family is replenished and an
individual item setup cost for each item type replenished. The objective is to meet all customer demand
without backorders at minimum total cost. We propose a six-phase heuristic (SPH) and a simulated
annealing meta-heuristic (SAM). The SPH begins by assuming that each customer demand is met by a
unique replenishment and then it seeks to iteratively maximize the net savings associated with order
consolidation. Using SPH to find a starting solution, the SAM orchestrates escaping local solutions and
exploring other areas of the solution state space that are randomly generated in an annealing search pro-
cess. The results of extensive computational experiments document the effectiveness and efficiency of
the heuristics. Over a wide range of problem parameter values, the SPH and SAM find solutions with
an average optimality gap of 1.53% and 0.47% in an average time of 0.023 CPU seconds and 0.32 CPU sec-
onds, respectively. The heuristics are strong candidates for application as stand alone solvers or as an
upper bounding procedure within an optimization based algorithm. The procedures are currently being
tested as a solver in the procurement software suite of a nationally recognized procurement software
provider.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The coordinated, capacitated lot-size problem (CCLSP) deter-
mines the time-phased replenishment schedule that minimizes
the sum of ordering and inventory costs subject to capacity con-
straints. A family setup cost is incurred each time one or more
items in the product family are replenished, and a minor setup cost
is charged for each item replenished. Item demand, which must be
met without backorders, is dynamic but deterministic over the
planning horizon. As noted by Silver (1979), Shapiro et al. (2002)
and Robinson and Lawrence (2004), coordinated lot-size problems
are often encountered when managing manufacturing, transporta-
tion and procurement processes. The need to coordinate the pro-
curement decisions for a family of products that share a
constrained transportation resource, such as an ocean shipping
container, motivates this particular research.
ll rights reserved.

: +1 979 845 4980.
an), p-robinson@mays.tamu.
Due to their importance in industry and mathematical com-
plexity, coordinated lot-size problems are frequently studied in
the supply chain management literature. However, while effective
heuristic and exact algorithms exist for the uncapacitated problem
variant, the more mathematically challenging capacitated problem
remains virtually unsolved. Only Erenguc and Mercan (1990), Rob-
inson and Lawrence (2004) and Federgruen et al. (2007) propose
algorithms and provide computational results for solving the
CCLSP. In each case, the authors experience computational diffi-
culty finding optimal solutions and suggest that the literature will
mainly develop in the direction of discovering effective and com-
putationally feasible heuristic procedures. Federgruen et al.
(2007) describe an effective progressive interval/expanding hori-
zon heuristic, but solution time grows rapidly with problem size.
Hence, further research in this area is well-justified.

This paper proposes a six-phase heuristic (SPH) and simulated
annealing meta-heuristic (SAM) for the CCLSP. Conceptually the
SPH is related to the heuristics in Dogramaci et al. (1981) for the
multi-item capacitated lot-size problem (MCLSP) and Robinson
et al. (2007) for the coordinated uncapacitated lot-size problem
(CULSP). However, while the MCLSP assumes the replenishment
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decision for each item is independent and capacity is available
each time period, the CCLSP models a shared family setup cost
where capacity is only available in time periods in which the setup
cost is paid. This unique problem characteristic provides an addi-
tional layer of hierarchical setup decision variables to the MCLSP,
which further complicates the problem’s solution requiring more
intricate procedures for savings calculations and ensuring capacity
feasibility. In addition the inclusion of capacity constraints in
CCLSP further complicates solution of the CULSP due to the need
to allocate scarce capacity among competing items.

Over a wide range of parameter values, the SPH finds solutions
with an average optimality gap of 1.53% in an average time of
0.023 CPU seconds. However, solution quality is sensitive to the
time between orders (TBO). Embedding the SPH into a SAM proce-
dure yields significantly improved solutions and mitigates the im-
pact of TBO on solution quality. For a set of 1635 test problems,
spanning all experimental designs reported in the literature, the
SAM finds solutions with an average optimality gap of 0.47% in
an average time of 0.32 CPU seconds. This improvement in solution
quality comes at a very modest increase in computational re-
sources. These results are encouraging and suggest the potential
application of SPH and SAM as stand-alone solvers, lot-sizing pro-
cedures embedded within requirements based planning software,
and as upper bounding procedures in optimization-based
algorithms.

Section 2 provides a brief literature review. Section 3 provides
the mixed-integer-programming formulation that is solved to
establish performance benchmarks for the heuristic. The heuristic
procedures are detailed in Section 4. Section 5 describes the exper-
imental design and provides the results. Finally Section 6 gives the
conclusion and implications of the research.
2. Literature survey

CCLSP is a generalization of the single-item uncapacitated lot-
size problem (ULSP), the single-item capacitated lot-size problem
(CLSP), the multiple-item capacitated lot-size problem (MCLSP),
and the coordinated, uncapacitated lot-size problem (CULSP). A
variety of taxonomies for classifying the general lot-sizing prob-
lem are proposed in Drexl and Kimms (1997), Karimi et al.
(2003), Robinson and Lawrence (2004), Jans and Degraeve
(2008) and Robinson et al. (2009). Belvaux and Wolsey (2000,
2001) and Pochet and Wolsey (2006) discuss modeling and solv-
ing capacitated lot-sizing problems as mixed-integer programs.
Jans and Degraeve (2007) review meta-heuristic approaches for
solving lot-sizing problems. Instead of duplicating these reviews,
we summarize the literature most closely related to the research
reported here.

In the CULSP, a family of items shares a setup cost and each un-
ique item ordered incurs an item setup cost. The CULSP is shown to
be NP-complete by Arkin et al. (1989) and Joneja (1990). Zangwill
(1966), Veinott (1969), Kao (1979), Silver (1979) and Haseborg
(1982) develop dynamic programming algorithms for which solu-
tion time grows exponentially in problem size. Erenguc (1988), Kir-
ca (1995) and Robinson and Gao (1996) propose specialized branch
and bound algorithms for the problem. Federgruen and Tzur (1994)
describe a branch and bound technique whose lower bound is pro-
vided by a partitioning heuristic. Fogarty and Barringer (1987), At-
kins and Iyogun (1988), Iyogun (1991), Silver and Kelle (1988),
Boctor et al. (2004), and Robinson et al. (2007) describe dynamic
programming, construction and meta heuristics for the CULSP.

The CCLSP contains both the shared capacity constraints across
items that complicate solution of the MCLSP and the binary family
setup decision variables that complicate the mathematical struc-
ture of the CULSP. Erenguc and Mercan (1990) consider multiple
product families assuming that labor is a sunk cost and capacity
is consumed by product family and item setup and production
run time. Computational results for problems with up to eight
items, 10 time periods, and four families are reported.

Robinson and Lawrence (2004) propose a Lagrangean heuristic
for the single-product family CCLSP with backorders. Computa-
tional experiments provide heuristic solutions with average opti-
mality gaps of 0.44%, 3.9%, and 4.72% at the 5%, 45% and 85%
capacity utilization levels, respectively. Optimal solutions to 12-
period problems with an 85% capacity utilization level and more
than two items could not be found within 100 minutes CPU time
by general-purpose optimization software. These findings high-
light the difficulty of finding both good heuristic and optimal solu-
tions for the CCLSP.

Federgruen et al. (2007) develop a strict partitioning (SP) and
a progressive interval/expanding horizon heuristic (EHH) for the
CCLSP. Their findings show that item and family time-between-
orders and capacity utilization impact heuristic solution quality.
The SP heuristics are computationally efficient, but have an aver-
age 14.7% optimality gap. The EHH heuristics provides solutions
with an average optimality gap of 1.2%, but computational
requirements increase rapidly with problem size. For example,
a 10-item and 10-period problem requires 30 CPU seconds, while
a 25-item and 10-period problem requires approximately
5.5 hours to solve.
3. Problem formulation

One challenge in verifying heuristic performance is to obtain
optimal solutions to large-size problems for performance bench-
marking. Toward this end, Robinson et al. (2009) evaluated the
computational requirements associated with solving the CCLSP
formulations in Gao and Robinson (2003), Robinson and Lawrence
(2004) and Federgruen et al. (2007). The most effective formula-
tion, and the one used for benchmarking purposes in this re-
search, is the Gao and Robinson (2003) formulation. This is an
extension of Robinson and Gao’s (1996) formulation for the unca-
pacitated coordinated lot-sizing problem, which is based on the
well known simple plant location formulation of the lot-sizing
problem (Krarup and Bilde, 1977). An alternative to this formula-
tion is the network formulation by Eppen and Martin (1987) for
MCLSP.

Minimum cost replenishment policies are to be determined
over a T period planning horizon for a single product family of
items. Demand, dit, is stated in capacity units for item
i ¼ 1;2; . . . ; I in period t ¼ 1;2; . . . ; T is deterministic, may vary over
time, and must be satisfied without backorders. Order lot-splitting
is permissible. A family setup cost St0 ; t0 ¼ 1;2; . . . ; T is required
each period any member of the product family is ordered. A minor
setup cost sit0 and a unit cost of cit0 is associated with ordering item i
in period t0. The per unit inventory holding cost for serving demand
for item i in period t from production in period t0 is hit0t . The total
unit cost for supplying demand for item i in time t from a produc-
tion in period t0 is Cit0t ¼ cit0 þ hit0t . Since we only consider a single
product family, we can implicitly consider product family setup
times by defining Pt0 , the total available capacity for period t0, as
the design capacity minus the family setup time. Decision variable,
Zt0 , equals 1 if the product family is setup in period t0, and 0 other-
wise. The decision variable, Yit0 , equals 1 if item i is ordered in per-
iod t0, and 0 otherwise. Xit0t is the portion of demand for item i in
period t that is served from an order in period t0. The mixed-integer
programming formulation of CCLSP is

Zp ¼ Min
XT

t0¼1

St0Zt0 þ
XT

t0¼1

XI

i¼1

sit0Yit0 þ
XT

t0¼1

XI

i¼1

XT

t¼t0
Cit0tXit0tdit ð1Þ
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Subject to

Xt

t0¼1

Xit0t ¼ 1 8i ¼ 1; . . . ; I; t ¼ 1; . . . ; T; ð2Þ

XI

i¼1

XT

t¼t0
ditXit0t 6 Pt0Zt0 8t0 ¼ 1; . . . ; T; ð3Þ

Yit0 6 Zt0 8i ¼ 1; . . . ; I; t0 ¼ 1; . . . ; T; ð4Þ
Xit0t 6 Yit0 8i ¼ 1; . . . ; I; t0 ¼ 1; . . . ; T; t ¼ t0; . . . ; T; ð5Þ
Zt0 ¼ 0 or 1 8t0 ¼ 1; . . . ; T; ð6Þ
Yit0 ¼ 0 or 1 8i ¼ 1; . . . ; I; t0 ¼ 1; . . . ; T; ð7Þ
0 6 Xit0t 6 1 8i ¼ 1; . . . ; I; t0 ¼ 1; . . . ; T; t ¼ 1; . . . ; T: ð8Þ

Constraints (2) insure that each item’s demand is satisfied in each
period. Capacity constraints are represented in Eq. (3). Constraints
(4) prevent an item setup from occurring unless the product family
is setup, while constraints (5) prohibit ordering an item unless the
item setup charge is incurred. Constraints (6)–(8) force decision
variables to take on feasible solution values.
4. Experimental heuristics

4.1. Six phase heuristic (SPH)

The SPH considers the impact of the shared family setup on
both cost and capacity. The shared family setup adds a hierarchical
layer of binary decision variables to the MCLSP and the capacity
constraints add a layer of complexity not found in the CULSP.
SPH is the first published improvement heuristic for CCLSP.
Improvement heuristics begin with a starting solution which
may be infeasible and then iteratively adjusts the replenishment
schedule seeking to restore feasibility and lower cost in a greedy
manner. Examples of improvement heuristics for MCLSP include
Dogramaci et al. (1981) and Karni and Roll (1982). SPH contains
three major subroutines that are implemented in six-phases. A
brief description of the subroutines and the six-phase approach fol-
lows. The details of the heuristics are provided in Appendix.

Subroutine I: Cost minimizing left-shift. The cost minimizing left-
shift subroutine iteratively reschedules either individual items
or the product family, whichever one yields the greatest net
cost savings, into earlier production time periods. Left-shifting
accepts higher inventory costs in return for lower setup costs.
Only ‘‘open” time periods (i.e., a product family setup is sched-
uled) are considered to receive the rescheduled production. The
entire product family cannot be left-shifted into an earlier time
slot if ‘‘closing” the period (i.e., removing the product family
setup from the production schedule) will result in insufficient
aggregate production capacity over the production horizon to
provide a feasible schedule. This subroutine guarantees aggre-
gate capacity feasibility, but does not guarantee individual per-
iod capacity feasibility.
Subroutine II: Feasibility seeking left-shift. This subroutine
reschedules production into earlier time periods as necessary
to guarantee individual time period capacity feasibility, while
minimizing the cost increase.
Subroutine III: Cost minimizing right-shift. This procedure
attempts to reduce inventory and total schedule costs by
right-shifting production as late as possible while still main-
taining capacity feasibility and meeting demand due dates.
4.1.1. Six-phase heuristic
The six-phase heuristic begins by verifying that the problem is

‘‘aggregate” capacity feasible over the planning horizon without
backordering. An initial production schedule is established with
lot-sizes ait = dit for all i and t, where dit is the demand of item i
in time period t stated in capacity units. Next, the heuristic is
implemented in six-phases as follows:

Phase 1. Run Subroutine I to generate a lower cost production
schedule if possible.
Phase 2. Run Subroutine II to insure that the production sche-
dule is capacity feasible in each time period.
Phase 3. Since the schedule changes during Phase 2 may gener-
ate new opportunities for cost reduction, Phase 2 is followed by
another application of Subroutine I.
Phase 4. Running Subroutine I in Phase 3 may destroy individual
time period capacity feasibility. Hence, Subroutine II is invoked
to guarantee feasibility.
Phase 5. Run Subroutine III in an attempt to decrease inventory
costs by moving production as late as possible in the planning
horizon while maintaining capacity feasibility.
Phase 6. Run Subroutine I to search for additional potential cost
reductions. However in this final phase, only lot-size consolida-
tions that do not violate individual time period capacity con-
straints are permitted. At the conclusion of Phase 6, the
heuristic terminates with a capacity feasible solution.

The procedures identify feasible solutions at the end of Phase 2,
4, 5 and 6.

The SPH is an extension of the two phase heuristic (TPH) for the
CULSP in Robinson et al. (2007), which considers both schedule and
cost adjustments related to capacity restrictions. The SPH differs
from the TPH in the following way. First, the TPH consists of two
subroutines: cost minimizing left-shift (similar to subroutine I
above) and cost minimizing right-shift (similar to subroutine III
above). A feasibility seeking left-shift subroutine is not needed in
the two phase approach, since capacity constraints are not consid-
ered in CULSP. Second, subroutine I for the SPH includes an aggre-
gate capacity feasibility check prior to rescheduling production
earlier in time. Third, subroutine III in the SPH must check individ-
ual period capacity before shifting production into later time peri-
ods. The final difference is the cost savings calculation in
subroutine I where there is no need for either item or family sav-
ings adjustment (as described in the Appendix: step 2 of subrou-
tine I) in the TPH since the left shift operation is not capacity
constrained. The SPH is a generalization of the TPH.

4.2. Simulated annealing meta-heuristic (SAM)

A simulated annealing meta-heuristic mimics physical anneal-
ing processes to escape from local optima solutions by applying
transition probabilities and Monte Carlo simulation to jump from
a current solution to a neighboring candidate solution. The transi-
tion probability, Pr, is

Pr ¼ Min 1; eðbC�C0 Þ=hn

� �
; ð9Þ

where bC is the objective function value of the current solution, C0 is
the objective function value of the candidate solution, and hn is the
current temperature. If C0 < bC , then Pr = 1 and the current solution
is replaced with the candidate solution. If C 0 P bC , the current solu-
tion is replaced by the candidate solution with probability Pr.

The meta-heuristic is initiated with a relatively high tempera-
ture, h0, which yields a high probability of accepting candidate
solutions and escaping from local optima in the early stages of
algorithm implementation. During the search, the temperature is
systematically reduced according to a cooling schedule making it
less likely to jump to an inferior candidate solution. We apply
a homogeneous cooling schedule that maintains a constant
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temperature for a specified number of iterations before being de-
creased. This enhances the probability of jumping to multiple
new solution neighborhoods during each phase of the cooling cy-
cle. The cooling schedule used in this experiment is,

hn ¼ hn�1 � 0:8; ð10Þ

where hn�1 is the temperature from previous iteration. At each tem-
perature level, the search for an improved solution is performed five
times prior to cooling. The search stops when the h = 1 or when an
improved solution is not found after k successive iterations. In pre-
liminary experiments we evaluated alternative values for k and ho,
with k = 3T and ho = 1000 providing the best results.

The SAM uses the SPH to find a feasible starting solution and
improve the randomly generated solutions in the search process.
The steps of the SAM follow.

Step 1: Initialization. Set n = 0 and ho = 1000. Solve the SPH for an
initial problem solution. Set bC equal to the objective function
value of the SPH solution. Set CB ¼ bC and the iteration counter,
count = 1.
Step 2: Neighbor generation. Randomly choose a value of
t 2 f1;2; . . . ; Tg and attempt to change solutions by perturbing
the current solution as follows. If it is not possible to perturb
the selected time period, then choose another t.
Case 1: If the current solution replenishes any items in per-
iod t, reschedule all the items in t into the immediately pre-
ceding open replenishment period that has sufficient
aggregate capacity. This removes the family setup in
period t.
Case 2: If the current solution does not have the product
family scheduled in period t, schedule a family setup in t.
Next, from the immediate preceding open replenishment
period, reschedule any items that demanded in time period
t or later into period t.

Step 3: Neighbor improvement. Attempt to improve the per-
turbed solution generated in Case 1 or 2 by applying the SPH,
while maintaining the status of the perturbed family setup in
period t. The resulting solution provides a new candidate solu-
tion with an objective function value C0.
Step 4: Neighbor search. Compute the transition probability Pr
using Eq. (9). If Pr is greater than or equal to a randomly gener-
ated number between [0,1], replace the current solution bC with
the candidate solution C0; otherwise reject the candidate solu-
tion. If bC < CB update the best known solution and set CB ¼ bC
and reset count = 1. Otherwise, set count = count + 1. Repeat
Steps 2–4 five times.
Step 5: Update cooling temperature: Set n = n + 1. Update the
temperature using (10).
Step 6: Termination. If count P 3T or hn 6 1, stop and report the
best found solution. Otherwise, go to step 2.

There are two primary differences between the simulated
annealing procedures as developed by Robinson et al. (2007) and
those proposed by this research. First, the neighborhood genera-
Table 1
Experimental designs.

Experimental design No. of items Setup cost (or) tim
(TBOs)

Based on Erenguc (1988) and Robinson
and Gao (1996)

f10;20;40g sit0 – mean $60 and
$18 St0 2 f$120; $48

Robinson and Lawrence (2004) f2;4;6;10;20;30;40g sit0 2 f$100; $300gS
$190 to $1920

Federgruen et al. (2007) 10 Low TBO – [1,3] M
High TBO – [5,10]
tion procedure must ensure aggregate capacity feasibility for the
capacitated problem. Second, our procedures use the SPH to gener-
ate the initial feasible solution and improve upon randomly gener-
ated solutions in the search process.

5. Computational experiments and results

We conducted three computational experiments based on the
designs in Erenguc (1988), Robinson and Gao (1996), Robinson
and Lawrence (2004), and Federgruen et al. (2007). Table 1 sum-
marizes the experimental designs. Optimal problem solutions for
performance benchmarking are found by solving the formulation
given in Section 3 using Xpress-MP Version 2003F (Xpress Opti-
mizer Version 14.24), a state of the art optimization software pack-
age. The SPH and SAM are coded in C++. The experiments were
conducted on a personal computer running a Pentium� 4 processor
at 1.9 GHz.

5.1. Experiment 1

Experiment 1 is based on Erenguc (1988) and Robinson and
Gao’s (1996) experimental designs for the CULSP with the neces-
sary extensions to consider capacity. The experimental factors in-
clude the number of items I 2 f10;20;40g, planning horizon
length T 2 f12;18;24g, family setup cost St0 2 f$120; $480; $960g,
and capacity utilization (the ratio of total demand divided by the
total available capacity over the planning horizon) CU 2 f0:2;0:4;
0:6;0:8g.

Demand is assumed to be normally distributed and varies by
item and time period. Odd numbered items have a mean demand
of 50 units and a standard deviation of 20 units: even numbered
items have a mean demand of 100 units and a standard deviation
of 20 units. Demand is randomly generated to occur in 50% of the
time periods. Unit production costs are equal to zero and inventory
holding cost per unit per time period is $1.

Erenguc (1988) found that uncapacitated problems with higher
family setup ratios, i.e., St0=

PI
i¼1sit0 , are more difficult to solve. To

study this factor, we construct test problems with the mean setup
cost ratios per time period ranging from 0.05 to 1.6. The mean fam-
ily setup cost is drawn from a normal distribution with a mean
St0 2 f$120; $480; $960g and a standard deviation of $36. St0 is con-
stant in all time periods in a test problem. Item setup costs, sit0 , are
drawn from a normal distribution with a mean = $60 and a stan-
dard deviation = $18, where sit0 varies by item, but is constant in
all time periods for each individual item.

For a specified value of CU, the problem’s demand stream is
generated and then the available capacity per time period Pt0 is cal-
culated, where Pt0 ¼

PI
i¼1

PT
t¼1dit

� �
=ðT � CUÞ. Since backorders are

not permitted, each test problem must be aggregate capacity feasi-
ble in each time period, i.e.,

Pj
t0¼1Pt0 �

PI
i¼1

Pj
t0¼1dit0 P 0 for all

j ¼ 1;2; . . . T . A few of the randomly generated test problems for
CU P 0.8 were aggregate capacity infeasible in an early time peri-
od(s). This was resolved by increasing Pt0 in the associated time
period(s) to attain feasibility. Otherwise, Pt0 is constant across time
e between orders Capacity
utilization

Length of planning
horizon

No. of problem
instances

std. dev.
0; $960g

f0:2;0:4; 0:6; 0:8g f12;18;24g 1080

t0 ranges from f0:05; 0:45;0:85g 12 420

ed. TBO – [2,6] f0:5;0:75;0:9g 15 135



Table 2
Summary results for the Experiment 1.

Experimental factor SPH average intermittent Optimality gapa Average optimality gapa Time for the heuristic (CPU second) Xpress-MP time (CPU seconds)

Phase 2 (%) Phase 4 (%) Phase 5 (%) SPH (%) SAM (%) SPH SAM

I = 10 0.98 0.95 0.90 0.89 0.49 0.01 0.15 51.68
I = 20 0.48 0.45 0.44 0.44 0.23 0.02 0.32 90.90
I = 40 0.14 0.13 0.13 0.13 0.07 0.06 0.80 12.55

T = 12 0.51 0.49 0.47 0.46 0.17 0.01 0.10 3.77
T = 18 0.54 0.52 0.51 0.50 0.29 0.02 0.35 19.95
T = 24 0.55 0.52 0.49 0.49 0.33 0.06 0.81 131.41

St = 120 0.21 0.19 0.17 0.16 0.11 0.03 0.42 2.66
St = 480 0.46 0.44 0.42 0.41 0.22 0.03 0.42 18.72
St = 960 0.93 0.91 0.88 0.87 0.46 0.02 0.42 133.75

CU = 0.2 0.33 0.33 0.32 0.31 0.04 0.02 0.37 1.22
CU = 0.4 0.45 0.45 0.45 0.44 0.16 0.02 0.42 4.39
CU = 0.6 0.57 0.55 0.51 0.51 0.34 0.04 0.43 38.37
CU = 0.8 0.78 0.71 0.67 0.67 0.51 0.03 0.46 162.85

Overall average 0.53 0.51 0.49 0.48 0.26 0.03 0.42 51.7

a Opt. gap = 100 � (heuristic objective value � opt. objective value)/opt. objective value.

A. Narayanan, P. Robinson / European Journal of Operational Research 203 (2010) 583–592 587
periods. For each combination of experimental factors, ten problem
instances are randomly generated resulting in a total of 1080 test
problems.

5.1.1. Experiment 1 results
Table 2 summarizes the experimental results, where the perfor-

mance metrics are the percent optimality gap (i.e., 100 � (heuristic
solution value � optimal solution value)/optimal solution value),
computational requirements, and problem size.

The SPH and SAM efficiently find solutions with average opti-
mality gaps of 0.48%, and 0.26%, gap standard deviations of 0.81%
and 0.53%, and maximum gaps of 7.58% and 6.87%, respectively.
SPH and SAM find optimal solutions for 318 and 460 of the 1080
test problems, respectively. The computation time for SPH aver-
ages 0.03 CPU seconds with a maximum of 0.328 CPU seconds.
SAM averages 0.42 CPU seconds with a maximum of 2.515
CPU seconds. For comparison purposes, Xpress-MP’s solution time
averages 51.7 CPU seconds with a maximum of 9565 CPU seconds
(2.65 hours).

The SPH provides feasible solution at the end of phase 2, 4 and
5, before providing the best found solution in phase 6. The solution
progressively improves from phase 2 to phase 6. There is 10%
improvement in the optimality gap from phase 2 to phase 6, while
0.00%
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Fig. 1. Two-way interaction between num
the time requirements for achieving this improvement is negligible
as the entire SPH heuristic takes an average of 0.03 CPU seconds. As
expected most of the improvement occurs in the first two phases,
the marginal improvements in the subsequent phases are con-
strained by the local optimal solution obtained in the initial
phases. To escape the entrapment at local optima we developed
the SAM.

The optimality gaps of both heuristics are positively correlated
with the family setup costs (i.e., family fixed cost ratios), and
capacity utilization. SAM results are also positively correlated with
the number of time periods in the planning horizon. SPH and SAM
performance is negatively correlated with the number of items. All
optimality gaps for the factor summaries are below 0.90% indicat-
ing robust performance.

As expected, the computational requirements for both proce-
dures increase with the number of items and length of the plan-
ning horizon but are fairly constant across family setup costs and
capacity utilization. On average SAM improves SPH solution qual-
ity by 46% at a cost of 0.39 CPU seconds.

Fig. 1 indicates a two-way interaction between capacity utiliza-
tion and the number of items where lower quality solutions are
associated with fewer items and higher capacity utilization levels.
This result is explained by viewing a larger number of items as
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increased granularity, which permits the items to more effectively
fit within the capacity constrained resource.
5.2. Experiment 2

Experiment 2 compares the performance of the SPH and SAM
procedures with the Robinson and Lawrence (2004) Lagrangean
heuristic (RLH). Since their computer code and experimental data
is not available for direct comparison, we replicate their experi-
mental design to facilitate the comparison. The experimental fac-
tors include number of items I 2 f2;4;6;10;20;30;40g, item
setup cost sit0 2 f$100; $300g, and capacity utilization CU 2 f0:05;
0:45;0:85g. We consider all possible combinations of experimental
factors and generate ten random problems for each combination
resulting in 420 test problems.

The planning horizon length is 12 time periods for all test prob-
lems. Item demand for each time period is randomly generated
from a uniform distribution on the interval [50,150]. To represent
demand lumpiness, item demand is set to zero when the generated
demand value is less than 60 units. Hence each item experiences
demand in approximately 90% of the time periods.

As in Robinson and Lawrence (2004) and Erenguc (1988), major
setup costs range from $190 to $1920, with larger setup costs as-
signed to problems with more items. This reduces the effect of
the family setup cost ratio on the experimental results. Replenish-
ment capacities are determined as described in Experiment 1.
5.2.1. Experiment 2 results
Table 3 summarizes the results by capacity utilization level. For

CU = 0.85, RLH could not verify optimal solutions for problems with
more than 10 items. The results reported in Table 3 for the RLH re-
flect this limitation. Using a more efficient problem formulation
and more powerful solver than Robinson and Lawrence (2004),
we obtain optimal benchmark solutions for all but four test prob-
lems. The average (maximum) MIP gap of these four problems is
0.19% (0.45%), justifying their use as performance benchmarks.

SAM finds substantially better solutions than SPH and RLH at all
capacity utilization levels. Average optimality gaps for SAM, SPH
and RLH are 0.51%, 1.53% and 3.02%, respectively. The SPH per-
forms better than RLH in moderate and tight capacity situations,
while RLH finds better solutions for the relatively uncapacitated
problems. Optimality gaps increase with higher capacity utiliza-
tion and minor setup costs for all solution procedures. Similarly,
Xpress-MP solution times increases exponentially as the capacity
utilization increases, requiring more than two hours to obtain
and verify optimality in some instances when CU = 0.85. In con-
trast, SPH and SAM solution times are nominal at all capacity uti-
lization levels. The SPH requires milliseconds to solve the test
problems, while SAM requires on average 0.13 CPU seconds. In
contrast, the RLH could not obtain solutions in less than
100 CPU minutes for tightly constrained problems with more than
10 items. The SPH and SAM provide higher quality solutions,
Table 3
Summary results Experiment 2.

Capacity utilization Average optimality gapa Tim

RLH (%) SPH (%) SAM (%) RL

0.05 0.44 0.81 0.05 6.9
0.45 3.91 1.48 0.46 10
0.85 4.72c 2.30 1.02 11

a 100 � (heuristic objective value � optimal objective value)/optimal objective value.
b RLH was run in IBM 3090-400E systems and was coded in FORTRAN 90.
c For CU = 0.85, only problems with up to 10 items were solved by Robinson and Law
d Four test problems could not be solved within a 2 hour time limit.
require less computational time, and solve larger sized problems
than the RLH.

5.3. Experiment 3

Maes and Van Wassenhove (1988) and Federgruen et al. (2007)
find that solution difficulty for MCLSPs increases with longer times
between orders (TBO). Since the test problems in Experiments 1
and 2 have relatively low TBO values, Experiment 3 replicates the
high TBO experimental design in Federgruen et al. (2007) and com-
pares the performance of the SPH and SAM with Federgruen et al.
(2007)’s reported findings for their best performing progressive
interval/expanding horizon heuristic (EHH).

The experimental factors include capacity utilization
CU 2 f0:5;0:75;0:9g, three levels of item and family TBO, where
TBOItem ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sit0=hd

p
; TBOFamily ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2St0=hD

p
; d is the average item de-

mand per time period, and D is the average family demand per
time period. Low, medium and high TBO-values are randomly gen-
erated from uniform distribution intervals [1,3], [2,6] and [5,10],
respectively and then the associated setup costs are calculated.
The available capacity Pt0 is computed from the CU as discussed
in previous sections.

Individual item demand per period is randomly generated from
a normal distribution with mean of 100 and a standard deviation of
10. The inventory holding cost per unit per period is $1.00. All
problems consider 10 items and 15 periods. The full factorial de-
sign has 27 combinations of factors. Since finding optimal solutions
requires more than 1 hour CPU time, we generate five test prob-
lems for each combination of factors as in Federgruen et al. (2007).

5.3.1. Experiment 3 results
Xpress-MP required on average 4251.45 CPU seconds to find

optimal problem solutions for this experiment. For the problems
that did not solve to optimality within a 2-hour time limit, the
average MIP gap is 0.82%. Only 18 of these problems had an MIP
gap greater than 1.0%. We used the best found solution for
benchmarking.

The SPH and SAM procedures find solutions with average opti-
mality gaps of 9.92%, and 2.08%, standard deviations of optimality
gaps of 11.7% and 1.97%, and CPU running times of 0.006 seconds
and 0.10 seconds, respectively. SAM had a maximum optimality
gap of 8.65% and 65% of the problems had gaps less than its average
2.08% optimality gap. The findings are summarized in Table 4 by
TBOItem and TBOFamily. For both procedures, solution quality is lower
at higher TBOItem values but higher at lower TBOFamily values. These
results are consistent with the observations in Maes and Van Was-
senhove (1988) that improvement heuristics, such as SPH, may not
be very effective in solving high TBOItem problems. However, the
SAM procedure significantly improves the poor quality of the
SPH solutions. For example, on the most difficult problems with
high TBOItem and low TBOFamily, the average SPH optimality gap of
29.99% is reduced to 5.71% by SAM. Across all test problems SAM
improves the SPH optimality gaps by an average of 80%.
e for the heuristic (seconds) Xpress-MP time (seconds)

Hb SPH SAM

0 0.001 0.12 1.68
.47 0.003 0.16 12.40
.91c 0.014 0.11 1155.63d

rence (2004).



Table 4
Summary results for Experiment 3.

TBOFamily Low Medium High

Six-phase SAM Xpress-MPa Six-phase SAM Xpress-MPa Six-phase SAM Xpress-MPa

Low TBOItem
b 1.72% 1.18% – 1.09% 0.58% – 0.38% 0.19% –

CPU time (seconds) 0.00 0.14 1938 0.01 0.12 2569 0.01 0.11 3346c

Medium TBOItem
b 10.09% 2.98% – 5.35% 1.59% – 2.23% 0.63% –

CPU time (seconds) 0.01 0.10 3376 0.00 0.11 3843c 0.01 0.10 4285c

High TBOItem
b 29.99% 5.71% – 20.81% 3.86% – 11.04% 1.97% –

CPU time (seconds) 0.00 0.07 5983c 0.01 0.08 6012c 0.01 0.07 6914c

a Optimal or Best integer solution obtained from Xpress-MP formulation in Section 3.
b Each cell in the row represents the average optimality gap 100 � ((heuristic objective value � optimal objective value)/optimality objective value) of five test problems.
c Indicates that one or more problem instances could not be optimally solved within a 2 hour time limit.

Table 5
Experiment 3 detailed results for SAM.

Capacity utilization (CU) 0.5 0.75 0.90

TBOFamily Low Medium High Low Medium High Low Medium High

Low TBOItem Opt. gapb SAM (%) 0.67 0.48 0.16 1.65 0.68 0.27 1.21 0.58 0.15
CPU time (seconds) SAM 0.24 0.20 0.20 0.13 0.11 0.10 0.04 0.04 0.03

Xpress-MP 23 128 613 400 2014 2727 5391a 5564a 6698a

Medium TBOItem Opt. gapb SAM (%) 2.44 1.44 0.55 2.86 1.49 0.57 3.65 1.85 0.76
CPU time (seconds) SAM 0.18 0.21 0.19 0.09 0.10 0.09 0.03 0.02 0.02

Xpress-MP 246 762 559 2516 3394a 4920a 7366a 7372a 7375a

High TBOItem Opt. gapb SAM (%) 3.84 2.05 1.07 6.96 4.48 2.01 6.34 5.06 2.83
CPU time (seconds) SAM 0.13 0.13 0.13 0.05 0.07 0.07 0.03 0.03 0.02

Xpress-MP 3074a 3163a 5921a 7402a 7489a 7412a 7474a 7383a 7410a

a Indicates that one or more problem instances could not be solved to optimality within the pre-set time limit of 2 hours.
b Average optimality gap for the heuristic = (heuristic objective value � optimal objective value)/optimality objective value.

A. Narayanan, P. Robinson / European Journal of Operational Research 203 (2010) 583–592 589
Table 5 displays the results for SAM and Xpress-MP by TBOItem,
TBOFamily, and CU. The results confirm that increasing capacity uti-
lization increases the difficulty for SAM to find good heuristic solu-
tions. However, TBOItem is the primary driver of solution quality.
While Xpress-MP experiences considerable difficulty finding opti-
mal solutions for medium and high TBOItem problems and high
capacity utilization problems, the results for SAM show the oppo-
site impact.

While the SAM finds high quality solutions (2.08% average opti-
mality gap), it is not as effective as the EHH in Federgruen et al.
(2007) which has an average 1.2% optimality gap. However, SAM’s
comparative advantage lies in its computational efficiency and
ability to solve large scale sized problems. Where SAM averages
less than 0.10 CPU seconds to solve the test problems EHH aver-
ages 16.6 CPU seconds. While this difference for the 10-item and
15-period test problems may not seem material, CPU requirements
increase rapidly with problem size for the EHH. This is illustrated
in Table 6, as reported in Federgruen et al. (2007), for medium dif-
ficulty test problems with CU = 0.75, medium TBOItem and medium
TBOFamily. For example, a 10-item and 10-period problem requires
29 CPU seconds, while a 25-item and 10-period problem requires
approximately 20,335 CPU seconds (5.64 hours) to solve. Consider-
ing that industry applications in procurement or transportation
Table 6
Running times in seconds for EHH from Federgruen et al. (2007).

Periods 10 25 50

5 items 7 42 124
10 items 29 184 524
15 items 416 2694 4310
20 items 1600 9372 16159
25 items 20335 66634 58264
planning often require coordinating more than 25 items over a
24 time period horizon, solution time is a major limitation of the
EHH procedure. On the other hand, the SAM efficiently handles
large problems with no degradation in heuristic performance.
SAM requires just 3 CPU seconds to solve the 40-item and 24-time
period problems in Experiment 1. Furthermore, high TBOItem and
high CU problems which confound EHH solutions times are rela-
tively easier to solve for the SAM.

As a final comparison, Federgruen et al. (2007) also propose a
strict partitioning heuristic that averages less than 1 CPU second
to solve Experiment 3’s test problems. However, while offering
no computational advantage, the strict partitioning heuristic’s
optimality gap is 14.7% versus 2.08% for the SAM and 9.92% for
the SPH.
6. Conclusions and implications

Capacitated coordinated lot-size problems are commonly
encountered during the management of production and distribu-
tion systems. However, the problem’s mathematical complexity,
which contains both complicating capacity constraints and joint
setup costs, has thwarted past research efforts in their attempt to
design effective heuristic and optimization-based approaches for
the problem. This research proposes a six phase improvement heu-
ristic and a simulated annealing meta-heuristic for the CCLSP. Over
a wide range of test problems, the SPH and SAM procedures find
heuristic solutions with average optimality gaps of 1.53% and
0.47%, respectively. Computational requirements average
0.023 CPU seconds for the SPH and 0.32 CPU seconds for the
SAM. The SAM provides considerable advantages over the existing
heuristics in the literature. It is more efficient and provides higher
quality solutions than the Lagrangean heuristic in Robinson and
Lawrence (2004). When compared to the EHH in Federgruen
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et al. (2007), SAM finds slightly higher cost solutions (2.08% versus
1.2%), but quickly solves industry sized problems in seconds that
cannot be solved in an hour by the EHH.

SAM’s combination of providing high quality solutions over a
wide combination of parameter settings, extreme computational
efficiency, and the capability of solving large-scale problems makes
it an attractive heuristic for industry application. We envision the
SPH and SAM being used as stand alone solvers, embedded within
requirements planning software, and as upper bounding proce-
dures for complex optimization based algorithms. These heuristics
are currently being tested as a solver in the procurement planning
software for one of the nation’s leading electronic and direct mail
marketers. Preliminary results are promising where problems with
239 items and 26 time periods are solved in less than 14 seconds.
These results strongly support SAM’s potential application in logis-
tics, operations and supply chain planning software.

Appendix A. Six phase heuristics

A.1. Subroutine I: cost minimizing left-shift

The subroutine begins with a problem that is aggregate capacity
feasible, but may violate capacity constraints in individual time
periods. A cost reducing procedure iteratively left-shifts the cost
minimizing lot-size(s) of either an individual item or a family of
items from period t into period t0 < t until no further savings are
possible. The procedure only considers left-shifting production into
open periods (i.e., those with a scheduled family setup). The sav-
ings,Ci(t0, t), for left-shifting item i’s production from period t into
t0 is:

Ciðt0; tÞ ¼ ðcit � cit0 Þait þ ðYit0 � 1Þsit0 þ sit � Iiðt0; tÞ for ait

> 0 and 0 otherwise;

where Yit0 ¼ 1 if production is scheduled for item i in period t0,sit is
the item’s setup cost in period t, the inventory carrying cost from
period t0 to period t is Ii(t0, t) = (t � t0)hiait, hi is the unit inventory car-
rying cost per period for item i,ait is the current production quantity
for item i in period t; cit0 is the unit cost associated with ordering
item i in period t0. The unit production cost is assumed to zero or
constant across all periods in the experimental design. The savings
associated with re-scheduling the entire product family from period
t into period t0 is

Cðt0; tÞ ¼ ðZt0 � 1ÞSt0 þ St þ
XI

i¼1

Ciðt0; tÞ;

where Zt0 ¼ 1 if a family setup is scheduled in period t0 and 0 other-
wise, and St is the product family setup cost in period t.

The maximum quantity that can be left-shifted into period t0; Et0 ,
is the unallocated capacity in open periods from 1 to t0 less the
capacity shortage in periods t0 +1 to t � 1. Defining Pj as the total
available capacity for period j, the design capacity minus the family
setup time, the unallocated capacity in open period j is

~ej ¼ Pj �
XI

i¼1

aij

 !
Zj;

where, ~ej > 0 indicates capacity is available and ~ej < 0 indicates that
the current production schedule exceeds the available capacity of
period j. The capacity shortage in period t0 + 1 to t � 1 that must
be supplied from period t0 or earlier is

Gðt0 þ 1; t � 1Þ ¼ Minf0; ~et0þ1; ~et0þ1 þ ~et0þ2; ~et0þ1 þ ~et0þ2

þ ~et0þ3; . . . ; ~et0þ1 þ � � � þ ~et�1g;

where G(t0 + 1, t � 1) < 0 signals a shortage. The maximum quantity
that can be left-shifted into period t0 is
Et0 ¼ Max 0;
Xt0

j¼1

~ej � jGðt0 þ 1; t � 1Þj
( )

:

The steps of the subroutine follow.

Step 1. Compute unallocated capacities. Compute the unallocated
capacity, et, in each period t for the current production schedule,
where

et ¼ Pt �
XI

i¼1

ait for t ¼ 1;2; . . . ; T:

Step 2. Compute item and family savings. Calculate Ci (t0, t) and
C(t0, t) for all i, t0 < t, and t for which Et0 > 0. Each item lot-size
with Ci (t0, t) > 0 and ait 6 Et0 and each family of items with
C(t0, t) > 0 and

PI
i¼1ait 6 Et0 are candidates for left-shifting from

period t into period t0. In addition, a product family cannot be
left-shifted from period t if removing the capacity violates
aggregate capacity feasibility when considering the opened pro-
duction periods. Specifically, the following must hold:Xt�1

j¼1

~ej �
XI

i¼1

ait þ
XT

j¼tþ1

~ej P 0

2a. Item saving adjustment. Shifting a production lot-size into
period t0 may exceed the period’s available capacity. In this case,
some of the production load in t0 must move into an earlier time
period(s) causing additional inventory holding costs. The quan-
tity moved earlier, ft0 , is

ft0 ¼ jMinf0; et0 � aitgj;

where ait is the quantity rescheduled from period t to period t0.
The adjusted item cost savings is ACiðt0; tÞ ¼ Ciðt0; tÞ � Cft0 , where
Cft0 is the incremental inventory carrying costs associated with
rescheduling quantity ft0 into a period earlier than t0. The penalty
Cft0 is calculated by first identifying ft0 , the capacity violation in
period t0. Next, the procedure looks earlier in time for the first
available capacity and computes the minimal incremental
inventory holding costs if ft0 is moved into this time period. If
the available capacity is insufficient to accommodate ft0 , the
penalty for moving the overflow units earlier in time is calcu-
lated. The procedure continues until the incremental inventory
holding costs for moving all ft0 units into available capacity slots
is determined. The adjusted cost savings,ACi(t0, t), is the maxi-
mum potential savings obtained by left-shifting item i into per-
iod t0.
2b. Family saving adjustment. Rescheduling a family of items into
an earlier time period may require two types of capacity related
inventory cost adjustments.
Type 1 cost adjustment, CNt. When rescheduling a family of items
from period t to t0, we eliminate the family setup and thereby
the capacity in period t. Part of this capacity, Nt, may have been
used to satisfy demand in periods greater than time t, which
must now be supplied from a period(s) earlier than t, thereby
increasing inventory holding costs. Specifically, Nt is expressed
as:

Nt ¼ MinfMaxf0; ~etg; jGðt þ 1; TÞjg;

where, Maxf0; ~etg is the available capacity in period t that can be
used to satisfy demand in periods t + 1 to T, and jG(t + 1,T)j is the
capacity shortage in periods t + 1 to T that is currently supplied
from production in period t or earlier. Mathematically,

Gðt þ 1; TÞ ¼ Minf0; ~etþ1; ~etþ1 þ ~etþ2; ~etþ1 þ ~etþ2 þ ~etþ3; . . . ; ~etþ1

þ � � � þ ~eTg:
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Two cases are possible.
Case 1: Nt = jG(t + 1,T)j. In this case, jG(t + 1,T)j was entirely sup-
plied by period t., The minimum possible increase in inventory
costs CNt is computed in a similar manner as for Cft0 .
Case 2: Nt < jG(t + 1,T)j. In this situation, only a part of jG(t + 1,T)j
is supplied by period t with the remainder jG(t + 1,T)j � Nt units
coming from an earlier period(s). In this case, we first temporar-
ily adjust the available capacity as necessary in the open peri-
ods from 1 to t � 1 to account for the quantity jG(t + 1,T)j � Nt

and then compute the cost adjustment, CNt.

Type 2 cost adjustment, CFt0 . Left-shifting the product family into
period t0 may exceed the period’s capacity. In this situation, a
portion of the production must be moved into a period earlier
than t0 thereby, incurring additional inventory holding costs.
The quantity moved forward is

Ft0 ¼ Min 0; et0 �
XI

i¼1

ait

( )�����
�����:

The minimum possible increase in inventory holding costs for
moving Ft0 units forward is CFt0 , which is computed similar to
Cft0 .The adjusted family cost savings, ACðt0; tÞ ¼ Cðt0; tÞ�
CNt � CFt0 , is the maximum potential savings from left-shifting
the product family from period t to t0.
Step 3. Left shift phase. If all ACi(t0, t) 6 0 and AC(t0, t) 6 0, STOP,
otherwise select the Maximum{ACi(t0, t),AC(t0, t)} for all i, t0 < t,
and t for left-shifting. If the maximum savings calls for left-
shifting item i, update the order schedules by setting
ait0 ¼ ait0 þ ait and ait = 0. Otherwise, the maximum saving is
associated with left-shifting a product family, so set
ait0 ¼ ait0 þ ait and ait = 0 for all i. Go to Step 1.
A.2. Subroutine II: Feasibility seeking left-shift

Subroutine II left-shifts production as necessary to guarantee
capacity feasibility in each time period while minimizing the in-
crease in schedule cost.

Step 1. Initialize. Set t = T.
Step 2. Check individual time periods for feasibility. If the produc-
tion in period t is within the capacity limit, i.e., et P 0, go to Step
6. Otherwise, continue.
Step 3. Insure sufficient capacity is available in earlier opened time
periods. If sufficient capacity is available to cover the shortage in
time t, jetj, then continue. Otherwise, schedule a family setup in
the time period(s) immediately prior to t until sufficient capac-
ity is available to cover the shortage.
Step 4. Compute the marginal cost of rescheduling. For each item i
scheduled in period t, calculate the cost of producing the item
in the immediate preceding open time period t0. The amount
rescheduled, rit, is either ait or jetj according to the following
two cases.
Case 1: If jetj > ait, then rit = ait. The marginal cost of rescheduling
item i from period t to t0 is MCiðt0; tÞ ¼ ðt � t0Þhiritþ
ð1� Yit0 Þsit0 � sit .
Case 2: If jetj 6 ait, at least jetj units must be transferred for fea-
sibility. However, assuming sufficient capacity is available in
earlier time periods, the entire lot size, ait, could be rescheduled
into period t0 if it results in lower incremental cost. The value of
rit yielding the minimum cost in the following equation is
rescheduled

MCiðt0;tÞ¼Min
½ðt� t0Þhiritþð1�Yit0 Þsit0 ; where rit¼jet j�
½ðt� t0Þhiritþð1�Yit0 Þsit0 �sit; where rit¼ait �

� 	
Step 5. Left-shift phase. Select the Minimum fMCiðt0; tÞg for all i
and t0 < t and reschedule its production by setting ait0 ¼ ait0þ
rit and ait = ait � rit. Next, update the available capacity in peri-
ods t0 and t by setting et0 ¼ et0 � rit and et = et + rit. If et < 0, go
to Step 4 otherwise go to Step 6.
Step 6. Roll back. If t = 1 stop, otherwise set t = t � 1 and go to
Step 2.
A.3. Subroutine III: cost minimizing right-shift

Subroutine III attempts to reduce costs by shifting production as
late as possible subject to capacity availability. The procedure be-
gins at time t = T and iteratively works backward. For each period
t with et > 0, the cost savings associated with shifting earlier pro-
duction into period t from t0 is calculated. The shift resulting in
the maximum savings is implemented. The procedure continues
shifting production into period t until et = 0 or further savings are
not possible. The algorithm then moves to period t � 1 and contin-
ues. A single item or a product family is candidate for right-shift-
ing. The maximum quantity of item i that can be shifted from
period t0 to t;v it0 , is the minimum of the unallocated capacity in
period t,et, and the quantity available to transfer out of period t0

as detailed in the following equation:

v it0

¼Min et; ait0 �
Net requirement for

item i in period t0

� �
�

Net requirement for item i

from period t0 þ1 to t�1

� �
 �� 	
:

The net requirement for item i in time period t0 is

Max
�
ðdit0 �

Pt0�1
q¼1 ðaiq � diqÞÞ;0

�
.

For v it0 > 0, the resulting cost savings is Hiðt0; tÞ ¼ hiv it0 ðt � t0Þ�
sitð1� YitÞ þ sit0Xit0 , where Xit0 ¼ 1 if the complete lot-size is shifted
and 0, otherwise. For v it0 ¼ 0;Hiðt0; tÞ ¼ 0. A family of items is fea-
sible for right shifting when

PI
i¼1v it0 6 et with a cost savings of

Hðt0; tÞ ¼ St0Xt0 � Stð1� ZtÞ þ
PI

i¼1Hiðt0; tÞ, where Xt0 ¼ 1 if the
whole product family is shifted from t0 to t. The steps of the subrou-
tine follow.

Step 1. Initialize. Set t = T.
Step 2. Check for capacity availability. If et 6 0 go to Step 5.
Step 3. Identify potential cost saving. For i ¼ 1;2; . . . ; I and
t0 ¼ 1;2; . . . ; t � 1 compute v it0 and Hi(t0, t). If

PI
i¼1v it0 6 et then

compute H(t0, t). If all Hi (t0, t) 6 0 and H(t0, t) 6 0 go to Step 5.
Step 4. Right-shift phase. Select the Maximum {Hi(t0, t),H(t0, t)} for
all i and t0 for right-shifting into period t. If the maximum sav-
ings is for right-shifting item i, update ait0 ¼ ait0 � v it0 ; ait ¼
ait þ v it; et0 ¼ et0 þ v it0 and et ¼ et � v it0 . Otherwise, the maxi-
mum savings is associated with rescheduling a product family,
so set ait0 ¼ ait0 � v it0 and ait = ait + vit for all i; et0 ¼ et0 þ

PI
i¼1v it0 ,

and et ¼ et �
PI

i¼1v it0 . If et 6 0, go to Step 5 otherwise, go to
Step 3.
Step 5. Roll back. If t = 1 stop, otherwise set t = t � 1 and go to
Step 2.
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