
Cautious Risk-Takers: Investor Preferences and Demand for

Active Management∗

Valery Polkovnichenko† Kelsey Wei‡ Feng Zhao§

November 2012

Abstract

Actively managed mutual funds have distinct return distributions from their passive bench-
marks and our theoretical analysis using tail-sensitive risk preferences suggests that active value
and growth funds may serve to reduce downside risk and capture upside potential, respectively.
Furthermore, tail-sensitivity measures estimated from the empirical pricing kernel have signif-
icant explanatory power for active fund flows, even after controlling for business cycles and
market-wide sentiment. Finally, active funds, unlike their passive counterparts, have exposures
to option strategies hedging downside risk or capturing upside potential.

∗We are grateful for comments to Kris Jacobs and seminar participants at the Federal Reserve Board and the 2012
Lone Star Finance Symposium. The views presented in this paper are solely ours and do not necessarily represent
those of the Federal Reserve Board or its staff.

†Federal Reserve Board, Division of Research and Statistics, Capital Markets MS-89, 20th & C Street, Washington
DC 20551. e-mail:valery.y.polkovnichenko@frb.gov. Phone: (202) 912-7842

‡Department of Finance and Managerial Economics, The University of Texas at Dallas, School of Management
SM31, Richardson, TX 75083-0699. e-mail: kelsey.wei@utdallas.edu. Phone: (972) 883-5978

§Department of Finance and Managerial Economics, The University of Texas at Dallas, School of Management
SM31, Richardson, TX 75083-0699. e-mail: feng.zhao@utdallas.edu. Phone: (972) 883-5815



Cautious Risk-Takers: Investor Preferences and Demand for Active
Management

Abstract

Actively managed mutual funds have distinct return distributions from their passive bench-
marks and our theoretical analysis using tail-sensitive risk preferences suggests that active value
and growth funds may serve to reduce downside risk and capture upside potential, respectively.
Furthermore, tail-sensitivity measures estimated from the empirical pricing kernel have significant
explanatory power for active fund flows, even after controlling for business cycles and market-wide
sentiment. Finally, active funds, unlike their passive counterparts, have exposures to option strate-
gies hedging downside risk or capturing upside potential.
JEL: G11, G23
Keywords: tail-sensitive preferences, probability weighting function, active management, mutual
funds



Introduction

Despite poor performance of actively managed mutual funds relative to their passively managed

counterparts, assets under active management continue to significantly outweigh those of index

funds.1 This puzzling phenomenon has spurred considerable interest in the mutual fund literature.

Several recent papers develop models of state-dependent fund manager effort or skill that allude to

the active management puzzle (see, for example, Kacperczyk, Van Nieuwerburgh and Veldkamp,

2012, and Glode, 2011). A central feature of this line of research is that active managers can

generate conditional returns that are attractive to fund investors.2 While the focus of these existing

studies has been on fund manager actions and fund performance, in this paper we approach the

issue from the equally important side of investor demand. We take funds returns as given and

use them as inputs to individual investors’ portfolio decisions to identify features of investor risk

preferences which could generate the demand for active funds.

Using bootstrapped fund return distributions, we show that actively managed mutual funds are

distinct from their passive counterparts, particularly in the tails of their return distributions. We

conjecture that due to such differences, active funds may appeal to investors who are sensitive to

downside risk or upside potential. Such features of individual preferences are widely supported in

experimental studies and have been applied in the literature on portfolio diversification (see, for

example, Shefrin and Statman, 2000 and Mitton and Vorkink, 2007). We use a structural model

of a rank-dependent utility function which allows overweighting of tail events to generate testable

implications about the demand for active funds. We then examine how active fund flows respond

to changes in risk preferences inferred from the empirical pricing kernel and find strong support

1For example, Fama and French (2010) estimate that during the period from 1984 to 2006, active equity mutual
funds underperformed benchmark portfolios by approximately 1% annually, roughly the average cost of investing in
mutual funds.

2Specifically, in Kacperczyk, Van Nieuwerburgh and Veldkamp (2012) time-varying managerial skill emerges from
constrained information processing capacity, while in Glode (2011) fund managers have a disutility from applying
effort. Both of these mechanisms imply that managers endogenously generate higher abnormal returns when state
prices are higher. Active funds could therefore be attractive to investors because their conditional performance
(alpha) positively covaries with a component of investors’ pricing kernel even though the unconditional alpha is
negative.
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for our predictions. While prior studies often examine the relation between fund performance

and the pricing kernel, we directly link investor demand for active funds with the pricing kernel.

Furthermore, as our framework is able to disentangle investor risk preferences towards the upper

and lower tails, we show that these two channels of investor demand have different effects on flows

into value and growth funds.

Using a sample of US domestic mutual funds during the period from 1996 to 2008, we first

compare the distribution of monthly returns between actively and passively managed funds within

the same investment category. We compare several conditional and unconditional moments: stan-

dard deviation, skewness, kurtosis, and conditional means in the upper and lower tails. Based upon

bootstrapped moments for each type of funds, we show that the return distributions of active and

passive funds are quite different. Active growth funds tend to be more volatile while active value

funds tend to be less volatile than their passive alternatives.3 In addition, active growth funds

are less negatively skewed and have higher conditional means for the upper quantiles than passive

growth funds. Active value funds, on the other hand, have lower standard deviations and higher

conditional means for the lower quantiles. Active funds also tend to have higher kurtosis (higher

probability of tail events). We therefore hypothesize that investors may be attracted to active funds

given their distinctive return distributions, particularly in the upper and lower tails.

To explore this channel of demand for active funds, we use a model of preferences to examine

whether investors may find active mutual funds attractive when their risk preferences are sensitive

to downside risk or upside potential. Specifically, we model risk preferences using a rank-dependent

expected utility (RDEU, Quiggin, 1983 and Yaari, 1987) with probability weighting function. This

weighting function allows us to model investor preference for the upside potential jointly with the

aversion to downside risk.4 While seemingly contradictory, as the oxymoron in the paper’s title, such

3For example, during the period of 1996 to 2007, active large-growth funds have a monthly standard deviation of
returns of 5.3% versus 4.7% for passive large-growth funds, while active large-value funds have a monthly standard
deviation of returns of 3.9% as compared to 4.2% for their passive counterparts. These differences are statistically
significant at 5% level.

4This is possible because risk attitude in RDEU is not tied to the curvature of the utility function. The probability
weighting function captures the risk attitude toward event probabilities separately from the standard risk aversion
toward wealth or consumption. A similar mechanism is used in the Cumulative Prospect Theory of Kahneman and
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behavior is widely supported by extensive experimental evidence in decision science literature. We

hypothesize that upside potential seeking and downside risk aversion are important determinants

of the demand for active management.

Through simulation exercises we demonstrate that the observed differences in return distribu-

tions between active and passive funds are quantitatively significant to an RDEU investor. In

our simulation exercises we use a two-parameter version of the Prelec (1998) probability weighting

function that allows us to model a wide variety of risk attitudes towards tail events. One parameter

(α) controls the extent of over- or under-weighting of the tails while the other (β) allows us to tilt

the tail overweighting either towards the right or left side of the distribution. We simulate distribu-

tions of monthly returns for active and passive funds in growth and value categories and compute

differences in certainty equivalents (CE) of these distributions for a range of Prelec function param-

eters. We also consider the portfolio problem of an investor who has a choice between active and

passive funds with a joint return distribution bootstrapped from the data. We solve numerically

for optimal portfolios and examine the comparative statics of the demand for active management

with respect to parameters of the probability weighting function.

The results from both the comparative statics of the CEs and the optimal portfolios show that

active growth funds may be more attractive to investors with probability weighting functions that

place more emphasis on the upper tail of the return distribution due to active growth funds’ greater

upside potential. On the other hand, active value funds may be more attractive to investors who

are more concerned with protecting against the downside risk. The model generates empirical

predictions about how the demand for actively managed funds versus their passive counterparts

should respond to changes in investor preferences. We then test these predictions using mutual

fund flows.

In our empirical tests, we estimate the probability weighting function from the S&P 500 in-

dex options and construct proxies for individual components of the pricing kernel responsible for

downside risk aversion and for upside potential seeking, following Polkovnichenko and Zhao (2012).

Tversky (1992).
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We construct two sets of proxies with monthly frequency: α and β from the Prelec (1998) two-

parameter probability weighting function, and the left-tail and right-tail slopes of the pricing kernel

estimated non-parametrically. Estimating the empirical pricing kernel and investor preferences from

the option market has been a commonly applied approach (see, for example, Jackwerth, 2000 and

Ait-Sahalia and Lo, 2000). The no-arbitrage assumption between stock and option markets ensures

that the empirical pricing kernel reflects risk preferences of stock investors even if not all of them

trade index options. In addition, since investments by U.S. open-end equity mutual funds account

for a significant part of the stock market capitalization, we would expect that our option-based risk

preference estimates are representative of the risk attitudes of the average mutual fund investor.5

We show that the parameters of the probability weighting function estimated from pricing kernel

implied in index options have significant explanatory power for monthly fund flows into actively

managed funds after controlling for flows into passive funds within the same investment category

and overall category and market performance. Specifically, we find that flows into actively managed

growth funds significantly increase as investor sensitivity to upper tail events raises. At the same

time, flows into value funds increase with investor aversion to lower tail events. These findings

are consistent with our theoretical predictions and suggest that active growth funds are attractive

to investors with strong risk-taking preferences while active value funds are attractive to investors

seeking downside risk protection.6

We also investigate if our main results relating fund flows to tail-sensitive preferences are ro-

bust to the control of investor sentiment. On one hand, prior studies have documented certain

links between investor sentiment and fund flows (see, e.g., Ben-Rephael, Kandel and Wohm, 2011

and Yadav and Massa, 2012). On the other hand, while investor sentiment may lead to a strong

demand for either the downside protection or upside potential at a particular point in time, our

framework allows for the coexistence of demands for both downside protection and upside seeking.

5For example, according to the Federal reserve data, U.S. open-end mutual fund equity holdings at the end of
2009 account for more than 25% of the total capitalization of equity markets (see “Corporate Equities” table at
www.federalreserve.gov/releases/z1/20100311).

6As noted previously, these two types of behavior are not mutually exclusive under this utility function and our
results do not necessarily imply investor segmentation in the mutual fund market.
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In addition, when a sentiment index is high it could be because investors are less concerned with

the downside risk, more excited about the upside potential, or both. Our measures of tail prefer-

ences, however, can differentiate the demand for investments with payoffs in specific parts of the

distribution. Therefore, it is not clear whether investor sentiment can indeed serve as a substitute

for tail preferences. Nonetheless, we control for the Baker and Wurgler (2006, 2007) sentiment

measure in our flow regressions. We find that the market-wide sentiment measure is not strongly

related to flows into active funds except for the blend fund category. However, in all specifications

our measures of tail sensitivity maintain their significant economic and statistical relationships with

flows into active funds.

In an attempt to cross-validate the link between investor preferences and the observed pattern

of fund flows, we examine the investment behavior of different investor clienteles with potentially

distinct risk attitudes in order to see whether differences in their demands can be explained by our

measures of tail-sensitivity. Our results indicate that flows into retirement funds exhibit signifi-

cantly weaker sensitivity to the preference for upside potential yet much stronger sensitivity to the

preference for downside protection, relative to non-retirement retail funds with similar investment

styles. The significant sensitivity of retirement fund flows to Prelec β is thus in stark contrast to

prior evidence of inertia among retirement investors in changing asset allocations (see, e.g., Ameriks

and Zeldes, 2001; Madrian and Shea, 2001; Benartzi and Thaler, 2007). On the other hand, flows

into non-retirement retail funds often demonstrate significant exposures to either Prelec α or Prelec

β depending on their styles.

Finally, we examine whether actively managed funds indeed have returns which can help reduce

downside risk or capture upside potential. We augment the standard Carhart (1997) four-factor

model with returns of straddle and ATM or OTM call options and test whether actively managed

funds are more likely to load on these option-based factors compared to passive funds. As expected,

our results indicate that actively managed large-growth funds tend to have significantly positive

loadings on returns of ATM or OTM calls, while actively managed large-value or large-blend funds
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have significantly positive loadings on straddle returns. In contrast, their passively managed coun-

terparts have insignificant loadings on these option-based factors.

Our paper is closely related to several recent theoretical and empirical studies addressing the

coexistence of poor unconditional performance of actively managed funds relative to their passive

benchmarks and persistent investor demand for active management.7 Particularly, Glode (2011)

and Kacperczyk, Van Nieuwerburgh, and Veldkamp (2012) explore the idea that fund managers

cater to fund investor risk preferences.8 Glode (2011) presents a model where negative uncondi-

tional expected fund performance and the demand for active management simultaneously arise in

equilibrium because mutual fund managers decide on efforts and thus fund performance according

to the price of risk. In a related study, Kacperczyk, Van Nieuwerburgh, and Veldkamp (2012) show

that fund managers allocate their attention strategically in response to the time varying rewards

to active management. Essentially, in both of these studies, mutual fund managers generate active

abnormal returns that covary positively with a component of the pricing kernel.

Our work is focused on investor decisions and complements these studies from both theoretical

and empirical sides. We use a structural model of investor risk preferences to generate predictions

about how the demand for actively managed funds should be affected by changes in preferences.

Our framework is also distinct because it has implications for both upside potential-seeking and

downside protection demand with different testable implications for growth versus value funds.

Finally, our empirical analysis demonstrates the simultaneous impact of investor risk aversion and

upside-seeking preference on demand for active funds while the emphasis in the existing literature

has been on the performance of active funds relative to passive funds conditional on market cycles.9

7Empirical studies in this literature include, for example, Gruber (1996), Moskowitz (2000), Kosowski (2006),
Lynch, Wachter and Boudry (2007), and Fama and French (2010) among others.

8Other recent theoretical studies include, for example, Pastor and Stambaugh (2010), and Savov (2012). In
Savov (2012) active managers also perform a valuable service to investors but it emerges from superior information
processing skill of professional managers. The mechanism in his model is not mutually exclusive to the ones used
in Glode (2011) or Kacperczyk, et al. (2012). The model in Pastor and Stambaugh (2012) captures the idea that
managers have skill but active management has a decreasing returns to scale. While investors can learn the manager’s
skill from noisy returns, this process is slow and the size of active fund industry is persistent.

9See also Moskowitz (2000), Kosowski (2006), and Sun, Wang, and Zheng (2009) for empirical evidence on the
outperformance of active funds in down markets.
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Lastly, we note that the upside-seeking feature of investor preferences is related to non-monotonicity

in the pricing kernel, a well documented empirical property in the option pricing literature (see,

for example, Jackwerth, 2000; Ait-Sahalia and Lo, 2000; Bakshi, Madan and Panayotov, 2010).

The empirical pricing kernel implies that payoffs with high upside potential are valuable to some

investors.10 Consistent with this interpretation, our paper appears to be the first to show that

investor demand for active growth funds is related to the upside seeking preference in the pricing

kernel.

The rest of the paper is organized as follows. In Section 1, we describe our data and discuss

summary statistics of our sample funds. Section 2 compares the return distributions of active versus

passive funds. Section 3 provides an introduction to the utility function with probability weighting.

Section 4 explains the demand for active funds from investors with tail-sensitive risk preferences

through both simulation exercises and empirical analyses on fund flows and fund returns. Finally,

Section 5 concludes the paper.

1 Data

Our empirical analyses mainly utilize two types of data: the S&P 500 index option prices and fund

flows and returns for active and passive funds for individual investment styles.

We obtain data on S&P 500 index options (symbol SPX) from OptionMetrics for the period

from February 1996 to December 2008. The market for SPX options is one of the most active

index option markets in the world. These options are European, have no wild card features, and

can be hedged using the active market for the S&P 500 index futures. We select the monthly

quotes of options that are closest to 28 days from each month’s expiration date. The average of

the bid and ask prices is taken as the option price. We also obtain the term structure of default-

free interest rates from OptionMetrics. Following the procures in Aı̈t-Sahalia and Lo (1998) and

others, we remove options that are not liquid and infer the option implied underlying price to avoid

10Bakshi, Madan and Panayotov (2010) also show that this implies, consistent with empirical facts, negative
expected return on the out-of-the-money call options.
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nonsynchronous recording between the two markets. More details on our sample of options data

and the related filtering procedures are provided in Appendix A. We also obtain S&P 500 index

returns for estimating the inverse probability distribution function under physical measure. The

index returns series has an earlier start date of January 1990 since we need to obtain the rolling

estimates of the physical distribution.11

For analyses involving aggregate-level and individual fund-level mutual fund flows and returns,

we extract the data from Morningstar for the same period of 1996 to 2008. We include funds in

the following Morningstar investment categories: large blend (LB), large growth (LG), large value

(LV), medium blend (MB), medium growth (MG), medium value (MV), small blend (SB), small

growth (SG), and small value (SV). Since our main analyses concern mutual fund investments at

the aggregate level, we directly employ aggregate monthly flows into active and passive funds by

investment categories as provided in Morningstar. For analyses involving information aggregated

from the individual fund-level data, we only keep funds with TNA exceeding $10 million. To have

a benchmark for the return distribution of index funds, we focus on funds managed by Vanguard

since Vanguard funds are bellwether in the index fund industry and tend to have more complete

return history across all investment categories. In contrast, many other passive funds began much

later than did Vanguard funds and thus have much shorter time-series of return data. Therefore,

following Fama and French (2010) we use Vanguard funds as the representative of all passive funds

to facilitate the comparison of performance between passive and active funds.

In Table 1 we report summary statistics for aggregate monthly fund flows and TNAs as obtained

directly from Morningstar. Active funds have considerably larger dollar flows and TNAs than

passive funds in most investment categories. Figure 1 further demonstrates the time series of

dollar fund flows for active and passive funds. As expected, flows into active funds are generally

significantly larger and more volatile than those into passive funds.

In Table 2 we report summary statistics for individual fund-level information about actively

11In the comparative analysis not reported here, we apply fixed, rolling and recursive window for estimating the
physical distribution function and our results are not affected by this particular choice.
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managed funds. The median fund size as measured by TNA is relatively uniform across all cate-

gories, but there exists considerable cross-sectional variations in fund size both within and across

categories. Particularly, the mean fund size and fund flows are markedly larger than the median

values, suggesting that some funds rake in significantly more money than the average fund. The

returns of growth-oriented funds also generally exhibit greater volatility relative to funds in other

investment categories. Since large-cap funds dominate small-cap and medium-cap funds in terms

of both the number of funds and money flows, our analyses to follow will mainly focus on large-

cap funds where we have the most complete time-series of aggregate flow and return data in all

investment styles to analyze the behavior of aggregate investments in actively managed funds. How-

ever, in the robustness section we present main results using fund flows for small and medium-cap

categories for completeness.

2 Return Distributions of Actively Managed Funds

Do actively managed funds have different return distributions from index funds? We address this

question by comparing sample moments of active fund returns with index fund returns for each

fund investment style. The number of active funds grows considerably over our sample period with

the growth rate varies across styles. To compute the moments from a return distribution that

is stationary and representative of each style, we use the bootstrap method to generate paths of

monthly return series for each style. We account for differences in fund size in our sampling by using

the total net assets of the prior month as the weight in the random draw of the current month’s

return. We generate 250,000 paths of monthly return series for each investment style and compute

the sample moments and confidence intervals of these moments. For index funds we compute the

sample moments of the returns series for Vanguard funds in each investment category. Since the

recent financial crisis in 2008 could have altered the return distribution of mutual funds beyond

what mutual fund investors have normally expected of them, especially for large-value funds due

to their heavy holdings of the financial sector, we examine differences in sample moments between
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active and passive funds with and without data in 2008.

The specific sample moments computed from the generated paths of monthly return series

include mean, volatility, skewness, and kurtosis, as well as the conditional mean in both the worst

and best 5-, 10-, and 25-percentile of return distributions. For example, the expected return in

the best 10-percentile is computed as E [R|R ≥ q0.90] where q0.90 is 90% quantile of the return R

distribution. On the other hand, we compute E [R|R ≤ q0.10] , where q0.10 is 10% quantile, for the

expected return in the worst 10-percentile. These conditional means help highlight differences in

characteristics between the upside versus downside of the return distributions. We also compute the

autocorrelations of the monthly return series (not reported) and find the serial correlation rather

weak and having little effect on our sample moments calculation.

We report return moments and conditional mean returns in Tables 3 and 4, respectively, for large

active and passive funds.12 Panels A and B report the results excluding and including 2008 data,

respectively. As expected, Panel A of Table 3 indicates that active funds exhibit lower unconditional

mean returns than their passive benchmark regardless of the investment style. However, when we

compare sample moments beyond the mean, the results indicate that active growth funds offer better

upside potential than their passive counterparts, while active value funds offer greater downside

protection. In terms of magnitudes, active large-growth (LG) funds have a monthly (non annualized)

return volatility of 5.26% versus 4.69% for passive benchmarks. Active large-value (LV) funds

have a return volatility of 3.90% versus 4.24% for passive benchmarks. These differences are both

statistically and economically significant. They are manifestation of differences in performance

distributions between active and passive management.

Since mutual funds have very little use of derivatives, active management is thus needed for

a fund portfolio’s variance to be significantly lower than that of a passive portfolio with similar

holdings. The same is true for a portfolio to have an improved upside yet a limited downside

12In unreported analyses, we find that actively and passive managed medium and small-cap funds exhibit similarly
different patterns in conditional returns and in moments. The comparison, however, is often based upon shorter
time-series of return data as monthly return data of medium and small-cap passively managed funds in certain
investment styles are not always available from the beginning of our sample period.
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relative to a passive benchmark. Active LG funds have significantly higher kurtosis and yet less

negative skewness than their passive counterparts. In panel B, we include year 2008 in our sampling.

Our finding on growth funds remains robust with similar statistical significance. However, the

difference in standard deviation between active and passive value funds, although qualitatively

similar, becomes statistically insignificant.

In Table 4, we explicitly examine differences in tail distributions by focusing on conditional

mean returns of active versus passive funds. The results indeed show that active LG funds have

significantly higher returns in the upside. In the top 5- and 10-percentile of return distributions,

active LG funds offer an average monthly returns of 11.2% and 9.4%, respectively, as compared

to 8.7% and 8.1% for passive LG funds. Both differences are statistically significant. In terms

of economic significance, these differences translate into 30% and 15.6% annual return differentials

between active and passive LG funds in the top 5- and 10-percentiles. As for the downside, although

active LG funds appear to have slightly lower returns than passive funds, the difference is statistically

insignificant and much smaller in magnitude than the upside difference.

In contrast to LG funds, the pattern in conditional mean for active LV funds is reversed with

smaller losses than passive LV funds in the worst case scenarios: 9.6% and 8.4% in annual return

differences in the worst 5 and 10 percentiles, respectively. Active LV funds also show smaller gains

on the upside, -4% and -7% differences in annual return in the top 5- and 10-percentiles, than the

passive benchmark. In addition, active LB funds tend to do better on both sides than their passive

benchmarks, although the differences are not statistically significant. Lastly, we report the result

including 2008 in Panel B. Again, active LV funds tend to have lower conditional means on both the

up and down sides, although the difference becomes insignificant for the down side. This reduced

performance advantage of active value funds when including 2008 is possibly driven by value funds’

large exposures to financial stocks, which performed exceptionally poorly during the 2008 financial

crisis.

Given prior evidence that mutual fund performance varies with business cycles, we next compare
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return distributions separately for boom and bust periods in our sample period.13 Each month we

compute the average market return in a six-month window that ends with the current month and

then divide the whole sample period into high/low market return periods using the average six-

month returns. The results for conditional means for the sample 1996-2007 are shown in Table 5.14

Interestingly, the advantage of active LG funds over passive benchmarks is more pronounced during

the high market return periods while the advantage of LV funds becomes more evident during

the low market return periods. Specifically in terms of annual return differential, active LG funds

outperform passive benchmarks by 18% (high return periods) and 10.8% (low return periods) in the

best 10-percentile and under-perform by 4.4% (high return periods) and 16% (low return periods)

in the worst 10-percentile. On the other hand, active LV funds outperform passive LV funds by 3%

(high return periods) and 11.5% (low return periods) in the worst 10-percentile and under perform

by 7.2% (high return periods) and 4.8% (low return periods) in the best 10-percentile. These findings

echo those in Glode (2011) and Kacperczyk, Van Nieuwerburgh and Veldkamp (2012) in that the

distribution of active fund performance exhibits state-dependency. Therefore, the distribution of

active fund performance is correlated with the market condition and thus the pricing kernel of the

aggregate investor.

3 Demand for Active Funds from Investors with Tail-Sensitive

Risk Preferences

3.1 Basics of a Utility Function with Probability Weights

Since Table 3 suggests significant differences in return moments across the active and passive uni-

verses, we conjecture that they should cater to investors with different tail-sensitive preferences.

Before we conduct simulation and empirical analyses on the effect of investor preferences on fund

flows, we briefly introduce the rank-dependent expected utility (RDEU) and refer the reader to

Quiggin (1993) for details. The RDEU is defined over outcomes ranked from the worst to the best.

13See, for example, Glode (2011) and Kacperczyk, Van Nieuwerburgh, and Veldkamp (2012) for theoretical studies,
and Gruber (1996), Moskowitz (2000), Kosowski (2006), Lynch, Wachter and Boudry (2007) for empirical studies.

14The results including 2008 are similar and are omitted for brevity.
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Here it is natural to rank outcomes by investor wealth w and we assume w to be a random variable

with c.d.f. P (w) and density p(w) = P ′(w). A probability weighting function G(P ) is a continuous,

non-decreasing function G(·) : [0, 1] → [0, 1], s.t. G(0) = 0 and G(1) = 1. For convenience, we

also assume that G(·) is differentiable. The purpose of G is to transform original probabilities into

decision weights that are used to compute the weighted average utility value. From this standpoint

the RDEU is similar to EU, but instead of expectations taken with respect to P as is standard

under EU, the utility is determined by expectation under G(P ):

U =

∫

u(w)dG(P ) (1)

If we define the probability weighting density as Z(P ) ≡ G′(P ) ≥ 0, we can rewrite the utility

function as the following:

U(w) =

∫

u(w)G′(P )dP = E{u(w)Z(P )} (2)

Note that outcomes with Z > (<)1 are weighted more (less) than their objective probabilities. As

a special case with G(P ) = P (Z = 1), the RDEU nests the standard EU. Also note that since the

decision weights integrate to 1, we have EZ ≡
∫

dG(P ) = 1.

We note here that while the weighting function is a transformation of the original probability

measure P into G(P ), the decision maker is assumed to know the underlying distribution P . In-

tuitively, the probability weighting function is a modeling mechanism for risk attitude toward the

probabilities of ranked events. It transforms events’ probabilities into decision weights in a way that

is conceptually similar to the utility function mapping wealth or consumption into utility values.

In this sense, probability weights address the criticism put forth by Allais (1988) that risk aversion

should be independent of the curvature of the utility in the absence of risk.15

Experimental studies (e.g. Camerer and Ho (1994), Wu and Gonzales (1996), Tversky and

Kahneman (1992)) find that individuals tend to overweight events in the tails of the distribution,

i.e. for P near 0 and 1, relative to events in the middle of the distribution. This type of behavior

15See also a related discussion in Quiggin (1993, section 5.6, p. 68). Also, unlike subjective beliefs, probability
weights depend on the actions of the agent through the cumulative distribution of ranked outcomes.
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may be characterized by the inverse-S shaped probability weighting function G with a corresponding

U-shaped density Z. One weighting function frequently used in the literature follows Prelec (1998):

G(P ) = exp(−(− log(P ))α) , α > 0 (3)

Experimental studies typically find α ∈ [0.5, 1] corresponding to the inverse-S shaped overweighting

probabilities in the tails. However, some studies surveyed by Camerer and Ho (1994) also find

that α > 1, implying that occasionally investors may underweight tail events and instead are more

concerned with outcomes in the middle of the distribution. Ultimately the shape of tail preferences

is an empirical object, much like the risk aversion and discount factor. Prelec’s function admits both

types of behavior and this flexibility allows us to empirically identify the prevailing risk attitude

implied in index options. Lower α corresponds to stronger overweighting in the tails relative to

the middle of the distribution. We show the effects of α on the weighting function in (3) in the

top two panels of figure 2. When α = 1 we have the case of EU: the weighting function is a

diagonal 45-degree line and its derivative is a constant 1. As alpha becomes lower the inverse-S

shape becomes more pronounced and the overweighting of the tails is stronger as can be seen from

the right top panel. When α > 1 (not shown), the weighting function becomes S-shaped instead

and under-weights the tails.

While convenient for experimental work due to its one-parameter structure, one of the shortcom-

ings of this weighting function is that it does not allow independent variation in the strengths of the

overweighting in the left and right tails of the distribution. Prelec also proposed a two-parameter

extension of this function that can accommodate different attitudes toward events in the left versus

right tails:

G(P ) = exp(−(−β log(P ))α) = exp(−(− log(P β))α) , α > 0 , β > 0 (4)

As seen from the above formula, this weighting function can also be represented as a compound

function using the one-parameter Prelec specification from (3) as G(P β). Note that P β is itself a

valid weighting function and is either globally concave (β < 1) or convex (β > 1). The former implies
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risk aversion (overweighting of the left tail) while the latter implies upside seeking (overweighting

in the right tail). The effects of β on the weighting function are shown in the two lower panels

of figure 2 which present the cases for β < 1. As β becomes lower the weighting becomes more

concave and the left tail is more over-weighted, which can be seen on the lower right panel. For

β > 1 (not shown), the weighting is convex and acts in reverse to over-weight the right tail. Thus,

the coefficient β in the compound representation can independently reinforce or weaken the effect of

risk attitude in the tails which is determined by α. Lower β corresponds to a uniform increase in risk

aversion, while lower α leads to stronger risk aversion on the left and simultaneously stronger risk

seeking on the right. The two-parameter extension allows the weighting function to independently

control the relative strengths of downside risk aversion and upside potential seeking.

We use the specification in (4) in conjunction with simulated distributions of active and passive

fund returns to develop empirical predictions from the model of tail-sensitive preferences. Specifi-

cally, we are interested in comparative statics of the demand for actively managed funds with respect

to the two structural parameters of the probability weighting function, α and β. We consider two

types of experiments. One involves the analysis of certainty equivalent differences between active

and passive funds and the other one is based on the optimal portfolio allocation between the two

types of funds.

3.2 Certainty Equivalents of Active and Passive Funds

As discussed in section 2, we use 250,000 bootstrapped time series to compute moments shown

in table 3 (Panel A) for active and passive funds within each investment category. We use these

moments as inputs to create a very large simulation from the Pearson system of distributions which

is a statistical parametric family of distributions designed to match a given first four moments. For

the computation of certainty equivalents we equalize mean monthly returns for all categories to 6%

annualized rate, which allows us to compare simulated funds based on the higher order moments
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only.16 We simulate 900,000 monthly returns for each type of fund and construct non-overlapping

returns for three and five years from these series.

To compute certainty equivalents we set u(w) = w and normalize initial wealth to 1. By using

a risk-neutral u we can make a clean comparison of the effects of the weighting function on the

preference for the return distributions of passive versus active funds.17 We then compute the utility

value for a given set of Prelec weighting function parameters α and β which, given our choice of u,

corresponds to the certainty equivalent return (CE) for a given distribution. We report differences

between CEs (∆CE = CEactive−CEpassive) within each investment category for a range of Prelec

parameter values.

Figure 3 shows the results for two fund styles and two holding periods. We observe that the

preference for active growth funds is decreasing in α and increasing in β. This is consistent with

active growth funds providing higher return volatility and higher upside potential as evidenced in

the relatively higher skewness of their return distribution, as compared to their passive counterparts.

Investors with lower α and higher β have a tendency to overweight upper tail outcomes and would

thus find active growth funds relatively more attractive. The preference for value funds is increasing

in α and decreasing in β. Higher α means that the investor is concerned with earning good returns

in the middle of the return distribution while lower β implies a greater concern with downside

risk. Such an investor is therefore more conservative regarding tail behaviors in general and the

downside risk in particular. Since the active value fund in the simulation has a higher skewness and

lower volatility compared to the passive benchmark, investors with higher α and lower β would find

it more attractive. These patterns are similar whether we consider three-year or five-year return

distributions.

16In the portfolio choice problem we use the original bootstrapped time series which preserves mean return differ-
ences due to fees and return correlations between active and passive funds.

17Additionally, by allowing β < 1 in simulations we effectively introduce global risk aversion similar to that in the
standard concave utility function.
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3.3 Portfolio Choice

Comparative statics of the CEs inform us about the changes in “distance” (in terms of utility)

between active and passive funds. They are indicative of the direction of preferences for one type

of distribution versus another. We now more directly evaluate changes in optimal portfolio alloca-

tion with respect to preference parameters. Ideally, this requires a simulation which preserves the

complex structure of cross-moments between passive and active funds. Since this is hard to achieve

with a random-number generator, we therefore use the original bootstrapped data where we sample

passive and active funds at the same time to preserve correlation and other higher cross-moments

structures.

We consider a portfolio problem where an investor has a choice of three assets: a risk-free asset,

a passive fund, and an active fund of the same investment category. We deliberately choose this

simple asset set in order to focus on the changes of optimal portfolio holdings in active vs. passive

funds in response to changes in probability weighting parameters. Since it is outside the scope of

our paper to explain how an investor would narrow down the choice of particular assets or fund

styles, we thus employ the simplest setting to focus on the choice between active versus passive

fund investments.

We restrict portfolio shares to be between zero and one to preclude short selling of funds and

the risk-free asset and set the risk free rate to two percent per annum. We assume power utility

function u(w) = w1−γ/(1−γ) and normalize the initial wealth to 1. We set the power parameter to

γ = 1 for value funds and γ = 0.2 for growth funds in order to stay within constraints and better

illustrate the variation in optimal portfolio allocations with probability function parameters. Using

bootstrapped distributions of funds in each category we compute the optimal portfolio weights for

two holding periods (n ∈ {3, 5} years) θ∗(n) = [θ∗1, θ
∗

2, θ
∗

3] for risk-free asset, passive fund and active

fund respectively. We then compute the fraction of the portfolio’s risky assets invested in active

fund: θf (n) =
θ∗
2

θ∗
2
+θ∗

3

. Figures 4 and 5 present our results for value and growth styles, respectively.

Each figure has four panels with the columns corresponding to the two holding periods and the
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rows showing the variation of θf (n) as a function of either Prelec α or β.

Figure 4 shows the results for value funds. As a function of α, the allocation to active value

fund is increasing for certain values of β or is close to flat. That is, as investors become less upside-

seeking they allocate slightly higher fraction to the active value fund. This muted response to α can

be understood through probability weighting changes on both ends of the distribution. As α moves

lower, the inverse-S shape becomes more pronounced and the upside-seeking preference becomes

stronger. But the active value fund has a lower variance and a lower upside in general compared to

the passive value fund. This contributes to a lower demand for the active value fund. However, at

the same time the downside portion of the inverse-S is also stronger with lower α and this makes

active value fund more attractive. As a result we get a “mixed” response of portfolio share to

changes in α. On the other hand, we find a much more pronounced and decreasing response of

portfolio allocation to the active fund with respect to β, which is quite consistent for a wide range

of α values. Here, the effect is unambiguous since lower β only implies more over-weighting of the

left tail and hence higher demand for downside protection provided by the active value fund.

In Figure 5 we show the results for growth funds. As a function of α, the allocation to active

growth fund is decreasing. When α is high, there is no demand for the active fund. When α is

low, as the investor becomes more attracted to the upside of returns, the risky portion completely

and rather abruptly changes to the active fund. The best way to understand this pattern is to note

that the active growth fund is strictly inferior to the passive growth fund on the basis of traditional

mean-variance metric. That is, the active growth fund has higher variance and lower average return

than the passive growth fund. There is also virtually no diversification benefit to holding the active

fund in conjunction with the passive fund. Thus, an investor with risk preferences “sufficiently

close” to mean-variance will completely disregard the active growth fund. As α becomes lower,

the investor becomes more and more risk-seeking and at some point switches completely to the

active fund, going for the option which maximizes upside potential when the risk-seeking preference

becomes sufficiently strong. Again, the abrupt nature of the switch is explained by virtually non-
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existent diversification benefit of jointly holding active and passive funds.18 This type of behavior

is reminiscent of the portfolio “layers” result first discussed by Shefrin and Statman (2000). They

show that under complete markets investors with probability weighting functions similar to the

one we use here will choose to hold a safe layer of protection in portfolio and then add to that a

maximally undiversified asset.19 A similar force operates here as the investor becomes sufficiently

risk-seeking, the active fund is the only risky asset that the investor is willing to hold.

Figure 5 shows that holdings of the growth fund are increasing with respect to β. This is intuitive

since for lower beta the investor is more concerned with downside protection and prefers the lower

volatility of the passive fund. However, for sufficiently low α, the investor always prefers the active

fund and its share is flat at 1 for a wide range of β’s. In these cases the effect of β on the downside

is not sufficient to counteract a strong upside-seeking preference as a result of a lower α.

The results from our analyses of portfolio demand and from certainty equivalent differences point

to a consistent pattern regarding how the demand for active value and growth funds vis-a-vis their

passive alternatives should respond to changes in market participants’ attitudes towards downside

risk and upside potential. We conclude this section by summarizing these empirical predictions

from the model of tail-sensitive preferences:

Result 1: For growth funds, the demand for active funds (relative to passive ones) is decreasing

in α and is increasing in β.

Result 2: For value funds, the demand for active funds (relative to passive ones) is increasing

in α and is decreasing in β.

To investigate whether these predictions are borne out in the data, in the next section we will

consider how active fund flows are affected by changes in investor preference towards downside risk

and upside potential. Specifically, we construct direct empirical estimates of Prelec parameters as

well as proxies for tail-sensitive preferences which do not rely on parametric assumptions and relate

18Note that in the case of value funds this is not the case since active value fund has both lower mean and lower
variance than its passive benchmark. Thus, there is a traditional diversification tradeoff between active and passive
value and the changes in demand are more gradual.

19Specifically, investors choose to hold a portfolio of constant payoffs in all states and a state contingent claim
which maximizes the upside potential.
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both sets of measures to the behavior of fund flows.

4 Empirical Evidence from Fund Flows

4.1 Option-implied risk attitudes towards the upside and the downside

Following Polkovnichenko and Zhao (2012), we extract the risk attitudes of the representative

investor toward upside potential and downside losses in returns on the aggregate wealth portfolio

from returns of S&P 500 index options. This approach relies on the estimation of the empirical

pricing kernels and the implied probability weighting functions, a transformation of the original

actual probability measure P into G(P ) reflecting the nonlinear weights assigned to different parts of

the return distribution. We present the results from the parametric-based method with assumptions

concerning the pricing kernel in this section and the results from non-parametric method in the

robustness Section 5. Employing these two alternative estimation methods helps us check the

robustness of our estimation. We now briefly describe how we construct the measures of tail-

sensitivity from option returns. Appendix B provides a summary of theoretical framework and

empirical methods used to obtain probability weighting functions from empirical pricing kernel.20

In the parametric approach we use the pricing kernel for RDEU given as:

m(R) = u′(R)Z(R)

where R is the market index return. Under the standard assumptions about marginal utility and

probability weighting function this SDF is positive everywhere and is arbitrage-free. Using the

option-implied price density allows us to estimate the pricing kernel m nonparametrically which

can then be approximated using a given parametric specification for u leaving the Z estimate as

nonparametric “residual”. For utility we use the CRRA (power) specification u(R) = R1−γ

1−γ
and set

it to the benchmark risk neutral case γ = 0.21 To approximate the empirical probability weighting

20For further technical details, assumptions, and derivations, we refer readers to Polkovnichenko and Zhao (2012).
21Using logarithmic or γ = 2 does not have any significant effect on Prelec α and only affects the average level of

β (see Polkovnichenko and Zhao 2012). For our purposes here, we are more interested in the time-series variation of
these parameters rather than their levels. We prefer the risk-neutral case for u because in that case u′(R) = 1 and
the behavior of the pricing kernel in the tails is captured parsimoniously only through the weighting function.
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function we use two-parameter Prelec function from (4). We use monthly data for options with 28-

days to expiration in order to construct a time series of the estimated coefficients α and β.22 Since α

and β are correlated because they both reflect the attitude toward downside risk, we orthogonalize

α against β in a time series regression so that our residual measure of α captures the risk attitude

toward the upside. The resulting series are shown in Figure 6.

4.2 Fund flows and option-implied risk attitudes

As we show in section 2, growth funds tend to provide greater upside potential while value funds

offer greater downside protection. To test the prediction we developed in section 3 with respect to

portfolio demand for active funds, we regress net flows into active funds (expressed as a percentage

of TNA) on the option-implied measures of investor risk attitude (β and orthogonalized α). Since

previous studies show that flows into different investor categories are related to investor sentiments

in different fund sectors (Sirri and Tufano, 1998), we separately conduct this analysis for individual

investment categories and control for flows to passive funds within the same category. Controlling

for flows into passive funds of the same investment objective can help capture flow variations that

are attributable to factors affecting investment sentiment for a particular investment style or equity

funds in general. In addition, we include average TNA weighted monthly returns of each investment

category in the previous month as an explanatory variable to account for flows resulting from the

return chasing behavior of mutual fund investors. We also control for total market returns in the past

six months in order to account for the effect of macroeconomic factors on mutual fund investments.

In addition, this control will help alleviate the concern that any observed effect of investor risk

preference might be driven by the business cycle if risk preferences vary across business cycles.

As mentioned earlier, we focus on large-cap funds because we have the most reliable time series

data for passive funds in this group. More importantly, large-cap funds may be more relevant be-

cause the probability weights we extract from options are based on the S&P 500 index, which itself

22Our conclusions are robust to the choice of expiration time. Other expiration dates of 45 or 56 days result
in qualitatively similar estimates for the weighting function parameters. See Polkovnichenko and Zhao (2012) for
details.
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is a large-cap portfolio. However, our results for medium and small-cap categories, as presented

later in the robustness section of the paper, are qualitatively similar. Similar to the bootstrapped

moments analysis, we also present this regression separately for the full sample of 1996-2008 (Panel

A) and for the sample excluding 2008 (panel B).23 The time-series coefficient estimates and their

t-statistics are shown in Table 6. Given the autocorrelation in fund flows, we report t-statistics com-

puted using the Newey and West (1987) autocorrelation and heteroskedasticity consistent standard

errors.

Table 6 (Panel A) shows that flows into active funds are significantly positively correlated with

category returns, market returns and flows into passive funds, particularly for large-growth and

large-blend funds. This is expected since flows into active funds should be influenced by factors

driving investments in the equity market in general. More interestingly, Table 6 indicates that the

coefficient on α for large growth funds is negative and statistically significant. Recall from our

previous discussion that α is a measure of upside potential and a lower value of α is associated

with a greater preference for the upside. Thus, the result indicates that, other things being equal,

a greater preference for the upside leads to larger flows into active growth funds. This finding

is consistent with the properties of fund return moments presented earlier. Active growth funds

have higher conditional expected returns on the upside and higher volatility than their passive

benchmarks, which would be attractive to investors with preferences for upside potential as shown

in our simulation exercise. The result from the flow regression shows that when the demand for

upside seeking implied in index options is stronger, fund flows are directed more towards active

growth funds that can better cater to such investor preferences, relative to their passive benchmarks.

For large-value funds we find that the coefficient on β is negative and statistically significant.

Since α is orthogonalized with respect to β in our specification, β is used to capture downside risk

aversion with the lower value corresponding to greater risk aversion. Thus, the result indicates that

more money flows into active value funds when β is lower and the investor demand for downside

23Since our results of all subsequent analyses are very similar whether we exclude data from 2008 or not, we only
report the results from the full sample.
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risk protection is higher. This is again consistent with our earlier observation from the empirical

moments of value fund returns. Specifically, active value funds provide higher conditional returns

on the downside and have less negative skewness than their passive benchmarks. From simulation

exercises we show that these distributional features would make active value funds more attractive

to investors whose risk attitudes imply a lower value of β. Indeed, the result from the regression

analysis confirms that when investor preferences for downside risk protection increase, more money

flows towards actively managed large-value funds. Panel B of Table 6 confirms the robustness of all

main results in the full sample to the exclusion of 2008, which is marked by the abnormally poor

performance of value funds during the financial crisis.

In Table 7 we present the results from an alternative specification where we use as the dependent

variable monthly flow differences between active and passive funds, standardized by the sum of the

total net assets for active and passive funds during the preceding month. The results under this

alternative specification are consistent with those previously discussed from Table 6. The coefficient

on α for growth funds is significantly negative, indicating that a stronger preference for the upside

tends to increase the difference between active and passive flows. Likewise, the coefficient on β

is significant negative for value funds, showing that as concerns with the downside risk become

greater, more money flows into the active value funds net of flows to passive value funds.24

4.3 Controlling for Investor Sentiment

The proxies we use to capture preferences for tail events may be related to the existing measures

of investor sentiment because they are constructed from market-wide indicators. Ben-Rephael,

Kandel, and Wohl (2011) show that aggregate net exchanges between equity and bond funds can be

a proxy for investor sentiment. In the same spirit, it is plausible that the relative flows into active

versus passive funds may also be related to investor sentiment. For example, actively managed funds

may outperform passively managed funds because active managers can engage in sentiment-timing

24in unreported analyses, we also conduct all tests in Table 7 excluding data from 2008 (i.e., the crisis period).
Our findings are qualitatively and quantitatively very similar. These results are available upon requests.
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(Yadav and Massa, 2012). If investor preferences for tail events are related to investor sentiment,

then our earlier findings may merely reflect the impact of investor sentiment on flows into active

funds as well as those into equity funds as a whole.

On the other hand, one important distinction of our measures of tail-sensitivity from any single

investor sentiment index is that while investor sentiment may capture stronger investor demand for

either downside protection or upside potential at a particular point in time, our framework allows

for the coexistence of demands for both downside protection and upside seeking. Furthermore, we

employ different investor preference proxies reflect separate movements in state prices for upside

potential and downside risk. When a sentiment index is high, it could be because investors are

less concerned with downside risks, more excited regarding upside potential, or both. Since a

single sentiment index does not distinguish between these cases, it therefore cannot differentiate the

demand for investments with payoffs in specific parts of the distribution. In contrast, our measures

contain more detailed information on investor risk attitudes and can explain the co-existence of

investor demand for both upside potential and downside protection. Nevertheless, in this subsection

we conduct a robustness analysis for the effect of investor preferences on monthly flows into actively

managed funds while controlling for investor sentiment.

We adopt the monthly investor sentiment measure in Baker and Wurgler (2006, 2007). This

measure is a composite sentiment index based on the first principal component of a number of

proxies for sentiment as suggested in the prior literature.25 To ensure that we are not merely

controlling for systematic risks, we adopt the sentiment index that has been orthogonalized to

several macroeconomic conditions. Over our sample period, the correlations between the investor

sentiment index and Prelec α and β are -0.20 and 0.27, respectively. Essentially, the more profit

seeking and the less risk averse investors are, the higher the overall investor sentiment.

In Table 9, we show estimates from the regression of net flows into active funds (expressed as

a percentage of NAV) on option-implied measures of investor risk attitude, controlling for monthly

25Specifically, Baker and Wurgler (2006) consider the following proxies for sentiment: the close-end fund discount,
turnover, number of IPOs, average first-day returns, equity share in total equity and debt issues, and dividend
premiums.
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investor sentiment. Similar to Table 6, we again control for category returns, total market returns

and flows into passive funds, and separately conduct analyses for individual investment categories

among large-cap funds. The result in this table indicates that after controlling for investor sentiment,

we still find a significantly negative loading on Prelec α for growth funds and a significantly negative

loading on Prelec β for value funds. That is, when investors have a greater preference for upside

potential, we observe greater flows into actively managed growth funds. On the other hand, when

investors have a stronger downside risk aversion, we observe greater flows into actively managed

value funds. As in Table 6, we again find that flows into blend funds load negatively on Prelec β,

suggesting that investors seeking downside protection are more likely to put money into large cap

blend funds. In addition, although investor sentiment does not have significant explanatory power

for flows into active growth and value funds, it has a significantly positive effect on flows into active

blend funds.

4.4 The comparison across different investor clienteles within the same
investment category

In the previous subsection, we have shown that flows into active funds behave consistently with

predictions derived from “tail-sensitive” preferences. It is conceivable that even among investors

of active funds, the sensitivity of fund flows to option-implied risk attitude varies across different

investor clienteles when there exists significant heterogeneity in their preferences. For example,

investors investing in actively managed mutual funds as part of their retirement plans may be more

concerned with reducing downside risk as opposed to seeking extreme upside payoffs. On the other

hand, retail investors holding mutual funds through traditional mutual fund accounts may have a

stronger upside seeking preference given their shorter-term investment objectives. Therefore, in this

section we compare the effects of investor risk attitudes on flows into active funds across different

investor clienteles.

First, we identify mutual fund investor clienteles using information from Morningstar concerning

investor types. Following Chen, Goldstein, and Jiang (2010), we consider a fund share as in the
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retirement class if it is indicated so by the Morningstar retirement fund indicator or its name carries

words such as “Retirement” or “Pension” (or their various abbreviations), or contains a suffix of

R, K, or J. For the remaining funds, we further separate them into institutional versus retail funds.

Funds or fund shares with a Morningstar institutional fund indicator equal to “yes” or require a

minimum initial investment of 100,000 USD or more are considered institutional funds. Note that

since individual investors may also invest in institutional shares through their employer-sponsored

defined contribution plans, it is unclear whether flows into some institutional shares may reflect more

of the investment behaviors of individual investors or those of institutional investors. As a result,

we focus on the comparison between two fund clienteles: retirement funds and non-retirement retail

funds. We expect that flows into non-retirement retail funds should exhibit greater sensitivities to

Prelec α relative to flows into retirement funds, especially in growth oriented investment categories.

On the other hand, flows into retirement funds should be more sensitive to Prelec β.

In Table 10, we repeat the analysis in Table 6 for retirement and retail funds separately.26 Each

month, we compute the flows of individual funds as the percentage change in total net assets during

the month, adjusted for investment returns (assuming flows occur at the end of each month). We

then compute the average flows into each of the two investor clienteles for each Morningstar invest-

ment category. Finally, we run time-series regressions of average monthly flows on Prelec α and β

for individual investor groups within each Morningstar investment category, controlling for category

returns, market returns and passive flows in the same category. Since certain investment categories

have too few funds that can be clearly classified into individual investor clienteles (especially in

the earlier years), we mainly focus on monthly observations where there are at least 10 funds in

an investor clientele. In addition, to facilitate the comparison of flow sensitivities to risk attitudes

across different investment clienteles, we standardize average flows into individual clienteles within

each investor category so that they all have the same mean (zero) and standard deviation (one).

We report t-statistics computed with Newey-West (1987) robust standard errors to account for

26For brevity we report results only for large cap funds. For other Morningstar investment categories, our results
are qualitatively similar, although not uniformly significant due to the smaller number of funds within these fund
categories.
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potential autocorrelation in fund flows.

Results in the table indicate that retail funds with the large-growth investment objective have

significantly negative loadings on Prelec α. In contrast, large-growth retirement funds have a

much smaller loading on this proxy for investor preferences for upside potential. This difference

is statistically significant at the 5% level according to the F-test. Similar but smaller differences

are observed among large-value and large-blend funds, where retirement funds have statistically

insignificant loadings on Prelec α. On the other hand, flows into retirement funds with the large-

value or large-blend style are highly sensitive to Prelec β, suggesting that investors in these funds

are more concerned with reducing downside risk. Particularly, this sensitivity to the downside

risk aversion is at least twice as large in magnitude for retirement funds as for retail funds within

the large-value or large-blend category, with the differences statistically significant at the 1% level

according to F-tests. Therefore, despite prior evidence of inertia among retirement investors in

changing asset allocations (see, e.g., Ameriks and Zeldes, 2001; Madrian and Shea, 2001; and

Benartzi and Thaler, 2007), on average flows into retirement funds exhibit much weaker sensitivity

to upside potential yet much stronger sensitivity to downside risk aversion, relative to non-retirement

retail funds. These flow patterns could potentially reflect the active role played by the sponsors of

retirement plans in adjusting the investment options available to plan participants as demonstrated

in Sialm, Starks and Zhang (2012).

In summary, using investor clienteles to proxy for heterogeneity in investor preferences for tail

events, the cross-sectional evidence in Table 10 validates our earlier finding that investor preferences

for tail events can help explain flows into actively managed funds.

4.5 Active funds’ exposures to option-based strategies

Our findings so far suggest that investors sensitive to tail events may prefer actively managed value

funds because they can help reduce downside risk. At the same time, these investors may also prefer

actively managed growth fund because they can help them better achieve upside potential. We next

analyze the performance of individual fund categories to see whether returns of active funds indeed
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exhibit characteristics that better cater to investors with tail-sensitive preferences than passively

managed funds do.

We use SPX options to construct portfolios that capture either downside risk aversion or upside-

seeking performance characteristics. For the risk aversion feature, we construct ATM straddles that

take long positions in both ATM call and put options. Since index straddles deliver a positive

payoff if the underlying index is more volatile than expected, holding a straddle essentially insures

against large losses of the underlying portfolio. As to the proxy for upside-seeking, we simply use

returns of ATM or OTM call. Following Agarwal and Naik (2004), at the beginning of each month

we select options that expire in the following month and compute returns from the beginning of the

current month to the beginning of the next month. Option returns are normalized by their sample

standard deviations.

In Table 11, we examine the time-series monthly returns of active versus passive fund portfolios.

The individual fund portfolios for large-growth, large-value and large-blend investment categories

are formed as value-weighted portfolios with the weight being prior-month total net assets.27 Both

fund returns and factor returns are expressed in percentage. To adjust for differences in fund char-

acteristics and risks, we fit fund returns into the Carhart (1997) four-factor model, but augment it

with straddle returns, as well as ATM or OTM call returns.28 These time-series regression analy-

ses are conducted separately for individual investment categories since funds catering to different

investor preferences are unlikely to have the same exposure to various option-like strategies. We re-

port t-statistics computed with Newey-West (1987) robust standard errors to account for potential

autocorrelation in aggregate fund returns.

For actively managed funds, we find that returns of both large-value and large-blend funds

have statistically significant loadings on straddle returns, while returns of large-growth funds have

significant loadings on ATM or OTM call returns. These loadings are also economically significant

27Since we focus on large-cap funds, the correlation between equal-weighted and value-weighted fund portfolio
returns is about 0.98.

28The Carhart (1997) four-factor model includes four factors: market return, Fama-French SMB and HML factors,
and the momentum factor.
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and often exceed 10 percent.29 Consistent with earlier observations on return moments, passively

managed funds do not exhibit significant loadings on any of the option-based factors, regardless

of their investment categories. Thus, for investors seeking downside risk protection or aspiring

for upside potential in portfolio returns, active funds represent an attractive investment option.

Under active management, they can deliver returns that have exposures to option-based strategies

which are difficult and/or costly to implement for an average fund investor with a small amount

of investable funds. Passive funds, while cheaper, cannot offer close substitutes to these return

characteristics of active funds.

5 Robustness Analyses

5.1 Fund flows and non-parametric measures of tail-sensitivity

To have a model-free measure of the shape of the weighting function, we construct alternative

measures of the slope of the pricing kernel. We evaluate the shape of the kernel at different levels of

moneyness and characterize its slope with respect to the cumulative physical distribution function.

We construct the slopes as follows. Given the return distribution function under the physical

measure, P (R), we define the slope via the area under the pricing kernel with respect to probability

P . That is, for a given return R0 and cumulative probability P0 = P (R0), the area is
∫ P0

0
m(P )dP

and the (left) slope is defined as
∫ P0

0
m(P )dP

P0

. The right slope is defined similarly as
∫
1

P0
m(P )dP

1−P0

. The

pricing kernel is scaled so that
∫ 1

0
m(P )dP = 1. These definitions have an intuitive interpretation.

Note that we can write:
∫ P0

0

m(P )dP =

∫ R0

0

m(P )pdR = Q(R0) (5)

Thus, our definitions of the slopes correspond to the ratio of risk-neutral to physical cdf in the left

tail and the ratio of the risk-neutral and physical de-cumulative probabilities in the right tail.30

The slopes measure how much risk neutral probability mass is concentrated in the tails relative

29Since option strategy returns are normalized by their standard deviations, the coefficients on option-based factors
show the change in fund portfolio returns in response to one standard deviation move in option strategy returns.

30 Note that these slopes can also be interpreted using the probability weighting function G corresponding to the
constant marginal utility. In general the pricing kernel is given by m = u′(R)Z(PR). If we set u′ = 1 then m = Z
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to the underlying physical probability. A value above 1 corresponds to overweighting and below

1 corresponds to underweighting; a value above 1 for the right tail measure indicates a U-shaped

pricing kernel over some ranges of moneyness.

We construct the slopes corresponding to moneyness of 0.97 for the left tail to capture the

attitude toward downside risk and 1.03 for the right tail to capture the attitude toward upside

potential. We use points on a moneyness scale rather than on cumulative probability because

physical and risk neutral distributions are time-varying, while constant moneyness allows us to

compare slopes across different months.

We also perform a normalization of the upside slope in order to better separate proxies for

downside risk versus upside potential. Table 12 shows correlations between various measures of

risk attitude. The left tail measure constructed from the 3% out-of-the-money threshold to the

left and labeled as “SDF (dwn)” measures downside risk aversion while the right side measure con-

structed from 3% OTM to the right and labeled “SDF (up)” measures upside-seeking preference.

The correlation between these raw slopes is relatively high (0.84) because they both increase with

the convexity of the pricing kernel. To better separate these two proxies, we use the upside slope

normalized by the downside slope (labeled “SDF (up norm.)”) in the regressions . This normaliza-

tion corrects for the common variation in the slopes. As seen from Table 12, the correlation of the

normalized upside slope with the downside slope drops to 0.15. Note, however, that normalization

has a very small effect on the correlation of the upside slope with (orthogonalized) α: the correlation

is -0.84 for the raw upside SDF slope and -0.83 for the normalized upside SDF slope. Recall that

lower α implies greater upside-seeking sentiment in preferences and therefore the normalized upside

slope of the SDF captures this sentiment well. On the other hand, the downside slope is correlated

with Prelec β and captures the downside risk aversion. In Figure 7, we show the time series of the

and we obtain:
∫

P0

0

m(P )dP =

∫

P0

0

Z(P )dP ≡ G(P0)

Therefore, our pricing kernel slopes coincide with the slopes of G defined as G(P0)/P0 on the left and (1−G(P0))/(1−
P0) on the right side of the distribution.
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SDF slopes constructed from 28-days options.

The results of flow regressions using the non-parametric measures of risk attitude are shown

in Table 13. We first consider the results for large-growth funds. The coefficient on the (normal-

ized) upside measure (SDF up) is significantly positive, consistent with our earlier result using the

parametric specification of Prelec’s function. When the upside sentiment is high, flows to actively

managed large-growth funds are larger. On the other hand, we find a positive coefficient on the

left tail measure (SDF dwn) for value funds. This suggests that when option prices imply more

overweighting of the left tail, more fund flows will be directed toward active value funds. Interest-

ingly, for value funds we also see a significant negative coefficient on the upside slope suggesting

that high upside sentiment is associated with lower flows to active value funds. Overall, the results

in Table 13 are consistent with those using the parametric specification of the weighting function.

Our findings are therefore not sensitive to alternative measures of risk attitudes.

5.2 Results for medium-cap and small-cap funds

Our analyses on the relationship between flows into active funds and tail-sensitivity measures so far

focus on large-cap funds. For completeness, we now present the results of our baseline analysis for

middle- and small-cap categories. We note that for some investment categories the data availability

of Morningstar aggregate flows into passive benchmarks considerably restricts the length of our

time-series of category flows.

Table 14 shows the result from regressions of fund flows on Prelec α (orthogonalized) and

β. We find that medium and small-cap growth fund flows are negatively related to Prelec α.

The magnitudes of the coefficients are similar to those estimated for large-cap funds, although

statistically the result for small-cap category is somewhat weaker. On the other hand, for active

medium and small-cap value funds, we find that flows are negatively related to Prelec β. Once

again, the coefficients have similar magnitudes relative to large-cap funds in Table 6, although

the coefficient of Prelec β is not statistically significant for medium-cap value funds. The latter

finding is perhaps due to considerably shorter time-series of data for this category. Lastly, similar
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to the finding for large-cap category, flows into medium and small-cap blend funds are significantly

negatively related to Prelec β, indicating that greater downside risk aversion tends to increase flows

into these funds. We conclude from these results that the relation between flows into active funds

and investor risk attitude is largely consistent across small, medium and large-cap funds.

6 Conclusion

Preferences for tail events have been identified as a salient feature of individual risk attitudes

in numerous independent studies in decision sciences. We propose that the demand for actively

managed funds may be associated with investor preferences for return distributions tilted toward

either upside potential or downside risk protection (i.e., tail-sensitive preferences). We evaluate this

hypothesis from several angles and find strong empirical and theoretical support.

Since our study uncovers a new mechanism behind investor demand for actively managed funds,

it suggests that fund managers may better structure their active portfolios to cater to different

investor clienteles. Our results also have implications for the performance evaluation of active

funds. If investors pay attention to the tail behavior of fund returns, then traditional performance

evaluation may be expanded to reflect that.
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Appendix A Description of the options data and filtering

procedures

To exclude illiquid options, we discard the in-the-money options, options with zero trading volume

or open interest, and the options with quotes less than 3/8. We also exclude options that allow for

arbitrage across strikes31. The average number of options is approximately 34 each month. There

are more OTM puts than OTM calls, averaging about 16 puts that are at least 3% OTM versus

about 7 calls that are at least 3% OTM each month for the 28-day options. The average Black-

Scholes implied volatilities exhibit the ”smirk” shape as documented in the option pricing literature.

The average trading volumes for the OTM options suggest they are quite liquid compared with the

near-the-money options.

Next, we apply the procedure from Aı̈t-Sahalia and Lo (1998) to address the problem of non-

synchronous prices between the option and underlying index and the unobserved dividend process

in the data.3233 Specifically, on each day t the forward price Ft(T ) of maturity T and the spot price

St are linked via the no-arbitrage condition:

Ft(T ) = Ste
(rt,T−δt,T )(T−t), (A.1)

where rt,T is the risk free rate and δt,T is the dividend yield from t to T. This forward price can be

inferred from option prices through put-call parity. That is, the call price C(t) and put price J(t)

of the same maturity T and strike price X satisfy:

C (St, X, T − t, rt,T , δt,T )− J (St, X, T − t, rt,T , δt,T ) = e−rt,T (T−t) [Ft(T )−X] . (A.2)

This relation is independent of any specific option pricing model. Using near-the-money call and

put option prices, we can derive the implied forward price of the underlying index.34 This procedure

31Specifically, we exclude options that violate the monotonicity constraint across strikes but keep options that
violate the convexity constraint which is more frequent.

32The underlying index prices are usually recorded at a different time from the option prices within the day,
inducing nontrivial pricing biases as suggested in Fleming, Ostdiek, and Whaley (1996).

33We do not use the dividend yields provided in OptionMetrics because they are not observable ex ante.
34We use near the money options since they are more liquid. In addition, prior studies have shown that the put-call

parity holds well for them.
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removes the problem of matching option prices and the underlying spot price by their recording

times. Next, we compute the in-the-money call prices from the out-of-the-money puts using the

put-call parity and implied forward price. This is necessary when we later estimate the risk-neutral

density by taking derivatives of the call price with respect to the strike. The index returns in our

setting are the ratios of the forward prices, FT (T )/Ft(T ) = ST/Ft(T ), rather than the spot prices

ST/St. For stochastic dividend processes, returns on the forward prices are better proxies for returns

on the total wealth process by not excluding dividends.

Appendix B Estimating Probability Weighting Function from

Empirical Pricing Kernel

B.1 SDF with probability weighting function

To derive the SDF we use a static model with utility function in Eq. (1) over terminal wealth w.

Assume that markets are complete, the consumer has initial wealth w0, and he has access to N +1

traded securities. Let θk be portfolio share of investment in security k as and Rk be its return. The

portfolio constraint implies θ0 = 1−
∑N

k=1 θ
k and the terminal wealth is given by

w = w0

(

N
∑

k=0

Rkθk

)

. (B.3)

Using results from Ai (2005) on differentiability of RDEU with respect to continuously distributed

random variables, the first order optimality condition with respect to θk is given by

E{u′(w)Z(P )(Rk −R0)} = 0 k = 1, ..., N. (B.4)

We can write this equation in a standard stochastic discount factor form as

m = u′(w)Z(P ). (B.5)

We then can write the risk-neutral probability density function (PDF) q as

q =
m

Em
× p =

u′(w)Z(P )p

E{u′(w)Z(P )}
. (B.6)
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If we denoteR ≡ w
w0

gross return on total investor wealth and specialize to power utility u(w) = w1−γ

1−γ
,

after normalizing initial wealth to one, we can rewrite the SDF and the price density as

m = u′(R)Z(P ) and (B.7)

q =
m

Em
× p =

R−γZ(P )p

E{R−γZ(P )}
, (B.8)

where P and p now denote the CDF and PDF of R. This SDF is positive everywhere and is

arbitrage-free.

B.2 Estimation of probability weighting functions

To directly estimate the function G we use the following approach. Given the physical distribution

function P (·) and its density p(·) and the risk-neutral distribution Q(·) and its density q(·) over

the returns R, we proceed as follows. For a specific P0 with corresponding return R0 such that

P (R0) = P0, we have

G(P0) = G(P−1(R0)) =

∫ P0

0

Z(P )dP

=

∫ R0

0

Z(P (R))p(R)dR = c

∫ R0

0

q(R)

u′(R)
dR

= c

[

Q(R0)

u′(R0)
+

∫ R0

0

Q(R)
u′′(R)

u′(R)2
dR

]

, (B.9)

where u′(·) is the marginal utility and the normalizing constant c =
(

∫

∞

0
q(R)
u′(R)

dR
)

−1

. If the utility

function is linear, we have G(R0) = Q(R0), where the probability weighting amounts to the change

of measure.

We can estimate only combined SDF and cannot separately identify the marginal utility and

probability weighting density. Therefore, we only assume the utility to be non-convex. In this paper

we use u(w) = w. However, Polkovnichenko and Zhao (2012) investigate other popular specifications

and show that this choice does not affect significantly the estimates of Prelec α and mainly affects

the level of Prelec β.

To estimate risk-neutral density q, we apply the constrained local polynomial method with the

guidance of the semi-nonparametric method. Specifically, we have three steps in our procedure.

35



First, the risk-neutral moments are estimated based on the spanning result from Bakshi and Madan

(2000) and Bakshi, Kapadia, and Madan (2003). Second, we use the Gram-Charlier series expansion

(GCSE) to estimate semi-nonparametric risk-neutral density from the moments estimates. Finally,

we estimate the density using the constrained local polynomial method in which the smoothing

parameter, the bandwidth, is chosen by minimizing the simulated mean squared errors (MSEs)

using the bootstrapped samples generated from the semi-nonparametric estimates. There are two

advantages in this procedure. First, the semi-nonparametric estimates provide a robust benchmark

for choosing the bandwidth via simulation.35 Second, the semi-nonparametric estimates themselves

can be used as a robust check for conclusions based on the nonparametric estimates.

We also need to estimate the distribution function under the physical measure to compute

the probability weighting function. Consistent with the time-varying estimates of the risk-neutral

distribution, we allow the physical distribution to vary month by month. Because we estimate

the distribution from time series of the daily S&P 500 index returns, we rely on simulation to

generate estimates for returns over the horizons of our interest. We also want to employ the

most widely used models for the data generating process of daily returns as it resembles most

closely the aggregate view of market participants. To this end, we use the exponential generalized

autoregressive conditional heteroskedasticity (EGARCH) model of Nelson (1991). Furthermore,

we use the filtered innovation terms from the EGARCH model for simulation to avoid making

distributional assumptions on them. Overall, our procedure follows closely Rosenberg and Engel

(2002).

To estimate Prelec function parameters we approximate the nonparametric estimators by fitting

the two-parameter Prelec function. In this paper we use pricing kernels estimated each month from

options with 28 days to maturity. Assuming u(w) = w, we construct nonparametric estimators of the

weighting function and then approximate them with the best-fit Prelec function G(P ) = G(P β;α)

from Eq. (4).

35The reason that simulation is necessary for the choice of the bandwidth is that we are dealing with small samples
and finite sample bias and variance are not available especially for the constrained local polynomial method proposed
in Aı̈t-Sahalia and Duarte (2003).
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Figure 1: Aggregate monthly fund flows. We report aggregate monthly fund flows for active
and passive funds during each year from 1996 to 2008.
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Figure 2: Prelec probability weighting functions and corresponding density functions.
Top panels show the Prelec probability weighting functions and corresponding density functions for
inverse-S shape with β = 1 and several values of α ≤ 1. Bottom panels show the Prelec probability
weighting and corresponding density functions for concave shape with α = 1 and several values of
β ≤ 1.
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Figure 3: Difference in certainty equivalent (CE) returns of active and passive funds. We
use simulated return series from the Pearson distribution system to construct three-year and five-
year returns for passive and active funds with the growth and value investment objectives matching
bootstrapped moments. Using simulated returns we compute differences between CEs for active
and passive funds in each investment category. The figure reports CE differences for a range of
weighting function parameters.
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Figure 4: Fraction of portfolio allocated to the active value fund. We use fund returns from
1996 to 2007, to generate long bootstrapped time series of monthly returns. Passive and active
funds returns are sampled at the same time to preserve correlation. Monthly returns are cumulated
into three and five years holding periods. Portfolio assets include: passive and active fund and a risk
free asset with a constant return of two percent per annum. The figures show θf (n), the fraction
of risky assets allocated to the active fund and n = {3, 5} is the holding period. Top two panels
show optimal portfolio fraction as a function of Prelec α, and the bottom two panels as a function
of Prelec β. Utility is CRRA with power parameter γ = 1.
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Figure 5: Fraction of portfolio allocated to the active growth fund. We use fund returns
from 1996 to 2007, to generate long bootstrapped time series of monthly returns. Passive and active
funds returns are sampled at the same time to preserve correlation. Monthly returns are cumulated
into three and five years holding periods. Portfolio assets include: passive and active fund and a risk
free asset with a constant return of two percent per annum. The figures show θf (n), the fraction
of risky assets allocated to the active fund and n = {3, 5} is the holding period. Top two panels
show optimal portfolio fraction as a function of Prelec α, and the bottom two panels as a function
of Prelec β. Utility is CRRA with power parameter γ = 0.2.
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Figure 6: Coefficient values for the two-parameter Prelec function. We estimate the Prelec
parameters α and β by minimizing the distance between the Prelec function implied values and the
nonparametric estimates of the probability weighting functions obtained from the 28-day options.
This figure shows the estimated α and β, and the Prelec α that is orthogonalized to β (a residual
from a time series regression) during the sample period from January 1996 to December 2008. The
CRRA parameter is set to γ = 1. The nonparametric estimates are obtained from the constrained
local linear estimator with bandwidth chosen based on the simulated samples of the OTM option
prices. We use the A-type and C-type GCSE semi-nonparametric estimates for this simulation.
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Figure 7: Slopes of the pricing kernel. We plot the slopes of the pricing kernel m obtained from
28-day options on the S&P500 index for ±3% out-of-the-money thresholds, that is, a moneyness
of 0.97 and 1.03. The sample period is from January 1996 to December 2008. We use returns
corresponding to a moneyness of 0.97 for the left slope and returns corresponding to a moneyness
of 1.03 for the right slope. The upside slope is normalized by the downside slope as discussed in
Section 5.
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Table 1: Summary statistics of aggregate fund flows and total net assets. This table
reports the average monthly aggregate dollar net flows (in billions of US dollars) and percentage
net flows relative to total net asset values along with aggregate TNAs (in billions of US dollars) for
actively and passively managed funds during the period from 1996 to 2008.

Large Medium Small

Blend Growth Value Blend Growth Value Blend Growth Value

Active

Flow ($, bill.) 0.0504 0.5875 0.3487 0.1242 0.3277 0.2453 0.2336 0.1533 0.1085
Flow (% of TNA) 0.1194 0.1076 0.1326 0.3792 0.3664 0.6163 0.7994 0.4177 0.6878
TNA ($, bill.) 434.8 639.7 407.6 58.5 115.4 48.3 55.0 58.3 37.8

Passive

Flow ($, bill.) 1.3462 0.0752 0.0957 0.2053 0.0109 0.0208 0.0901 0.0272 0.0391
Flow (% of TNA) 0.7672 1.7617 1.2377 1.1714 63.0840 28.1160 0.8502 2.7115 0.8653
TNA ($, bill.) 243.4 12.4 9.8 18.9 0.1 0.3 16.2 1.2 7.3
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Table 2: Summary statistics of individual fund level information for actively managed
funds. This table reports summary statistics for TNA (in millions of US dollars), monthly returns
(in percent) and monthly flows (in percent of TNA) for individual active funds. The table shows
the mean, median, standard deviation and 25-th and 75-th percentiles for each investment category.

Large Medium Small

Blend Growth Value Blend Growth Value Blend Growth Value
TNA ($ mil.)

Mean 664 953 803 424 394 349 258 216 220
Median 100 122 102 83 94 78 87 73 73
Std. 2819 4054 3323 1642 1031 956 499 515 469
P25 37 38 36 29 31 29 32 30 30

P75 366 469 401 280 317 256 263 199 212
Return (%)

Mean 0.41 0.39 0.45 0.60 0.54 0.62 0.65 0.54 0.70
Median 0.39 0.37 0.45 0.58 0.50 0.64 0.63 0.52 0.69
Std. 1.51 2.05 1.38 2.37 2.38 1.78 1.97 2.48 1.72
P25 -0.40 -0.77 -0.33 -0.71 -0.90 -0.40 -0.52 -1.00 -0.29

P75 1.21 1.52 1.24 1.91 1.99 1.67 1.79 2.06 1.68
Flow (%)
Mean 2.64 2.39 2.20 2.27 2.36 3.40 3.02 2.16 2.74
Median 0.12 -0.01 0.07 0.06 -0.04 0.54 0.24 0.06 0.39
Std. 29.21 23.95 18.44 16.24 21.41 20.68 23.70 18.71 17.00
P25 -1.21 -1.29 -1.26 -1.46 -1.53 -1.25 -1.40 -1.63 -1.55
P75 2.35 2.23 2.25 2.47 2.39 3.51 2.62 2.63 3.41
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Table 3: Return moments for active and passive funds. We use fund returns from 1996 to
2007 or 1996 to 2008 to generate 250,000 bootstrapped time series. Using bootstrapped distribu-
tions we compute the confidence intervals and the averages for time-series mean, volatility, skewness
and kurtosis of monthly returns of individual actively and passively managed funds. Statistical sig-
nificance of the difference in moments between active and passive funds at 5% and 10% significance
levels are indicated by ** and *, respectively.

Panel A: 1996-2007
Mean (%) St. Dev. (%) Skewness Kurtosis

LG Active 0.77 5.26** -0.41 4.92**
LG Passive 0.82 4.69 -0.46 3.06
LV Active 0.82 3.90** -0.55 4.89
LV Passive 0.86 4.24 -0.62 4.44
LB Active 0.78 4.12 -0.55 4.38
LB Passive 0.83 4.22 -0.54 3.63

Panel B: 1996-2008
Mean (%) St. Dev. (%) Skewness Kurtosis

LG Active 0.40 5.55** -0.55 4.83*
LG Passive 0.47 5.01 -0.66 3.59
LV Active 0.48 4.29 -0.90 5.66
LV Passive 0.53 4.51 -0.78 4.69
LB Active 0.42 4.51 -0.87 5.22
LB Passive 0.49 4.52 -0.74 4.14
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Table 4: Conditional means for active and passive funds. We use fund returns from 1996 to
2007 or 1996 to 2008 to generate 250,000 bootstrapped time series. Using bootstrapped distributions
we compute the confidence intervals and conditional expected returns in both the best and worst
5-th, 10-th and 25-th percentiles of return distributions. Statistical significance of the difference in
moments between active and passive funds at 5% and 10% significance levels are indicated by **
and *, respectively.

Panel A: 1996-2007
Lowest Highest

5% 10% 25% 25% 10% 5%

LG Active -11.98 -9.44 -5.85 6.92 9.41* 11.15**
LG Passive -10.39 -8.48 -5.35 6.55 8.14 8.69
LV Active -8.81 -6.60* -4.10** 5.42** 7.28 8.39
LV Passive -9.59 -7.30 -4.58 5.86 7.86 8.73
LB Active -9.31 -7.20 -4.46 5.69 7.46 8.50
LB Passive -9.33 -7.56 -4.63 5.92 7.45 8.33

Panel B: 1996-2008
Lowest Highest

5% 10% 25% 25% 10% 5%

LG Active -13.36 -10.53 -6.71 6.76 9.11* 10.82**
LG Passive -11.73 -9.52 -6.17 6.39 7.98 8.59
LV Active -10.78 -8.03 -4.99 5.29** 7.08* 8.18
LV Passive -10.95 -8.28 -5.32 5.69 7.65 8.60
LB Active -11.18 -8.60 -5.37 5.56 7.26 8.33
LB Passive -10.57 -8.58 -5.43 5.78 7.27 8.24
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Table 5: Conditional means for active and passive funds under different market condi-
tions. We use fund returns from 1996 to 2007, to generate 250,000 bootstrapped time series. Using
bootstrapped distributions we compute the confidence intervals and conditional expected returns in
both the best and worst 5-th, 10-th and 25-th percentiles of the return distributions. To condition
on low and high market returns, the sample is divided based on 6-months lagged market return,
including the current month. Statistical significance of the difference in moments between active
and passive funds at 5% and 10% significance levels are indicated by ** and *, respectively.

Low market return
Lowest Highest

5% 10% 25% 25% 10% 5%

LG Active -13.14 -10.41 -6.80 7.13 9.23 10.85
LG Passive -10.94 -9.05 -6.03 6.67 8.33 9.12
LV Active -9.39 -7.01* -4.45** 5.80* 7.58 9.03
LV Passive -10.60 -7.97 -5.31 6.43 7.99 8.89
LB Active -9.73 -7.85 -5.02 6.04 7.75 8.99
LB Passive -9.37 -8.17 -5.21 6.25 7.96 8.90

High market return
Lowest Highest

5% 10% 25% 25% 10% 5%

LG Active -9.96 -7.57 -4.82 6.55 9.11 11.14**
LG Passive -9.16 -7.20 -4.45 6.17 7.64 7.91
LV Active -7.76 -5.79 -3.66 4.94 6.70 7.72
LV Passive -7.98 -6.04 -3.80 5.26 7.31 8.57
LB Active -7.91 -5.96 -3.83 5.24 6.87 7.86
LB Passive -7.86 -6.05 -3.86 5.52 6.73 7.50
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Table 6: Flows into active funds as a function of option-implied risk attitude. This table
reports the result from regressing average monthly flows into actively managed funds on Prelec
α and β, controlling for average flows into passive funds of the same investment category, lagged
category returns, and market returns as proxied by average monthly CRSP value-weighted index re-
turns during the prior six months. Prelec α is orthogonalized against β. Time-series regressions are
performed separately for individual Morningstar investment categories. We report t-statistics com-
puted using the Newey and West (1987) autocorrelation and heteroskedasticity consistent standard
errors.

Panel A: 1996-2008
Large Growth Large Value Large Blend

Coefficient t-stat. Coefficient t-stat. Coefficient t-stat.
Const. -0.5393 -0.86 3.4555 2.66 0.8128 2.07
Prelec Alpha -0.6802 -2.05 1.106 1.61 -0.012 -0.04
Prelec Beta 0.6329 0.87 -3.7282 -2.45 -1.0005 -2.25
Market Ret. 0.0929 4.92 0.0347 0.57 0.0458 1.95
Category Ret. 0.0314 5.28 0.0514 5.02 0.0186 2.78
Passive Flow 4.9518 5.55 2.6403 1.00 0.75 3.74
Adj. R-sq 0.4364 0.2151 0.4498
N (obs.) 155 155 155

Panel B: 1996-2007
Large Growth Large Value Large Blend

Coefficient t-stat. Coefficient t-stat. Coefficient t-stat.
Const. -0.5970 -0.96 3.2442 2.42 0.7660 1.71
Prelec Alpha -0.6575 -1.93 1.1936 1.65 0.0193 0.07
Prelec Beta 0.7046 0.97 -3.4534 -2.19 -0.9250 -1.86
Market Ret. 0.0927 4.58 0.0290 0.43 0.0219 0.97
Category Ret. 0.0282 4.30 0.0526 3.64 0.0087 2.16
Passive Flow 4.9530 5.55 1.9532 0.73 0.8643 4.75
Adj. R-sq 0.4045 0.1893 0.4640
N (obs.) 143 143 143
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Table 7: Flows differences between active versus passive funds as a function of option-
implied risk attitude. This table reports the result from regressing the average monthly flow
differences between actively and passively managed funds (as a percentage of the sum of TNA for
both types of funds in the previous month) on Prelec α and β, controlling for lagged category returns,
and market returns as proxied by the average monthly CRSP value-weighted index returns during
the prior six months. Prelec α is orthogonalized against β. Time-series regressions are performed
separately for individual Morningstar investment categories. We report t-statistics computed using
the Newey and West (1987) autocorrelation and heteroskedasticity consistent standard errors.

Large Growth Large Value Large Blend

Coefficient t-stat. Coefficient t-stat. Coefficient t-stat.
Const. -0.5887 -0.86 3.3922 2.63 0.6233 1.31
Prelec Alpha -0.9922 -2.70 1.1797 1.84 0.1145 0.53
Prelec Beta 0.7320 0.93 -3.6225 -2.41 -0.8528 -1.58
Market Ret. 0.1142 4.92 0.0411 0.68 0.0334 1.25
Category Ret. 0.0346 6.07 0.0526 5.75 0.0168 2.18
Adj. R-sq 0.3530 0.2101 0.0849
N (obs.) 155 155 155
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Table 8: Flows to active funds as a function of option-implied risk attitude controlling
for business cycles. This table reports the result from regressing the average monthly flows into
actively managed funds on Prelec α and β, controlling for the average flows into passive funds
of the same investment category, lagged category returns, and NBER recession indicator. Prelec
α is orthogonalized against β. Time-series regressions are performed separately for individual
Morningstar investment categories. We report t-statistics computed using the Newey and West
(1987) autocorrelation and heteroskedasticity consistent standard errors.

Large Growth Large Value Large Blend

Coefficient t-stat. Coefficient t-stat. Coefficient t-stat.
Const. -0.3821 -0.80 3.6322 2.95 0.8047 1.77
Prelec Alpha -0.7196 -2.13 1.0575 1.43 -0.0183 -0.07
Prelec Beta 0.5701 0.94 -3.9506 -2.61 -0.9529 -1.92
Recession -0.2882 -2.04 0.1148 0.31 -0.1584 -1.09
Category Ret. 0.0277 3.22 0.0554 3.49 0.0158 2.75
Passive Flow 0.3882 0.2119 0.4325
Adj. R-sq 0.4364 0.2151 0.4498
N (obs.) 155 155 155
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Table 9: Effect of option-implied risk attitude controlling for market sentiment. This
table reports the result from regressing the average monthly flows into actively managed funds on
Prelec α and β, controlling for the Baker-Wurgler (2006, 2007) market sentiment index, average
flows into passive funds of the same category, lagged category returns, and market returns as proxied
by the average monthly CRSP value-weighted index returns during the prior six months. Prelec
α is orthogonalized against β. Time-series regressions are performed separately for individual
Morningstar investment categories. We report t-statistics computed using the Newey and West
(1987) autocorrelation and heteroskedasticity consistent standard errors.

Large Growth Large Value Large Blend

Coefficient t-stat. Coefficient t-stat. Coefficient t-stat.
Const. -0.5016 -0.83 3.7851 2.59 1.2375 3.95
Prelec Alpha -0.6607 -2.08 1.2145 1.77 0.1729 0.68
Prelec Beta 0.5843 0.84 -4.1481 -2.45 -1.5549 -4.49
Market Ret. 0.094 4.39 0.048 0.89 0.0625 3.78
B-W Sentiment 0.0174 0.30 0.1491 1.35 0.2109 5.40
Category Ret. 0.0317 5.49 0.052 4.86 0.0217 3.92
Passive Flow 5.0224 5.32 2.7915 1.07 0.7933 4.78
Adj. R-sq 0.4328 0.2212 0.5204
N (obs.) 155 155 155
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Table 10: The effects of option-implied risk attitudes across investor clienteles. This table
compares the impact of SPX index option implied measures of Prelec α and β on active flows into
non-retirement retail versus retirement funds. Time-series regressions are performed separately for
each investor clientele within individual Morningstar investment categories. Reported t-statistics
are computed using the Newey and West (1987) autocorrelation and heteroskedasticity consistent
standard errors. At the bottom of the table we report F-test statistics along with their corresponding
P-values for the difference in the coefficients of Prelec α and β between non-retirement retail funds
and retirement funds.

Large Growth Large Value Large Blend

Coefficient t-stat. Coefficient t-stat. Coefficient t-stat.
Retail

Const. -0.6083 -0.76 3.5785 3.52 0.4792 0.44
Prelec Alpha -2.6534 -8.85 -0.7362 -1.78 -1.2908 -3.92
Prelec Beta 0.5025 0.56 -4.0191 -3.48 -0.6642 -0.55
Category Ret. 0.0289 2.59 0.0528 3.31 0.0410 2.72
Market Ret. 0.1904 6.02 0.0380 0.69 0.1386 3.30
Passive Flow 0.2743 4.05 0.3710 3.61 0.4398 4.08
Adj. R-sq 0.5592 0.2524 0.5012
N (obs.) 155 155 155

Retirement
Const. 0.7006 0.45 8.0641 5.43 9.5951 5.16
Prelec Alpha -1.7802 -4.70 0.8096 1.23 0.2382 0.35
Prelec Beta -0.8180 -0.48 -8.9465 -5.52 -10.7036 -5.03
Lag. Cat. Ret. 0.0131 0.81 0.0503 1.72 0.0358 1.33
Market Ret. 0.0443 0.61 -0.1398 -1.28 -0.0596 -0.52
Passive flow 0.1327 1.41 0.2167 0.83 -0.1097 -0.53
Adj. R-sq 0.1330 0.1997 0.2430
N (obs.) 155 90 94

Coefficient Differences Tests (Retirement vs Retail)
F-stat. p-value F-stat. p-value F-stat. p-value

Prelec Alpha 5.59 0.02 1.99 0.16 0.55 0.46
Prelec Beta 1.21 0.27 9.80 0.00 20.05 0.00
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Table 11: Fund return exposures to option returns. This table reports the regression esti-
mates from Carhart (1997) four-factor model augmented with option strategy returns. Each month
we form value-weighted portfolios (by individual funds’ TNAs) according to their Morningstar in-
vestment categories. For each fund portfolio, we estimate the time-series regressions of portfolio
returns on the Carhart (1997) four factors and returns of portfolios constructed from the S&P 500
index options that proxy for investor preferences for downside hedging (ATM straddle) and upside-
seeking (ATM or OTM calls). Fund returns and factor returns are expressed in percentage. The
returns of option strategies are normalized to have mean of zero and standard deviation of one. For
brevity, we only report the regression coefficient estimates for option related variables along with
their t-statistics. We report t-statistics computed using the Newey and West (1987) autocorrelation
and heteroskedasticity consistent standard errors.

Active Passive

Category Straddle OTM Call ATM Call Straddle OTM Call ATMCall

Large Growth 0.0102 -0.0734
(t-stat.) 0.17 -0.76

Large Value 0.1686 0.1463
(t-stat.) 2.09 1.44

Large Blend 0.0988 0.0620
(t-stat.) 2.34 1.27

Large Growth -0.0131 0.1182 -0.0645 -0.0452
(t-stat.) -0.22 1.82 -0.62 -0.39

Large Value 0.1948 -0.1328 0.1657 -0.0981
(t-stat.) 2.09 -1.35 1.46 -0.94

Large Blend 0.1084 -0.0487 0.0807 -0.0946
(t-stat.) 2.29 -0.95 1.46 -1.55

Large Growth 0.0172 0.1222 -0.0755 -0.0361
(t-stat.) 0.30 2.04 -0.78 -0.30

Large Value 0.1604 -0.1446 0.1404 -0.1042
(t-stat.) 2.02 -1.57 1.39 -1.08

Large Blend 0.0956 -0.0562 0.0564 -0.0987
(t-stat.) 2.30 -1.14 1.14 -1.67
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Table 12: Correlation Coefficients between SDF Slopes and Prelec Function Parameter
Estimates. We report the correlation coefficients between the model-free SDF slopes and the
estimated Prelec function parameters. Prelec α is orthogonalized to β. SDF (up) and SDF (down)
correspond to the SDF slopes for the upside potential and the downside risk as defined in Section
5. SDF (up norm.) is the upside slope normalized by the downside slope in order to separate their
common variations.

SDF (dwn) α (Orthog.) β
SDF (down) 1.00 -0.50 -0.76
SDF (up) 0.84 -0.84 -0.37
SDF (up norm.) 0.15 -0.83 0.31
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Table 13: Flows into Active Funds as a Function of Model-Free Measures of Risk Atti-
tude. This table reports the coefficient estimates from regressing the average monthly flows into
actively managed funds on risk-attitude measures implied in the S&P 500 index options, controlling
for average flows into passive funds of the same investment category, lagged category return, and
market returns as proxied by average monthly CRSP value-weighted index returns during the past
6 months. SDF (down) represents the ratio of RN probability to physical probability computed
from the left tail, 3% OTM Put and below, and is a proxy for downside risk aversion. SDF (up
norm.) is the ratio of RN probability to physical probability computed from the right tail, from 3%
OTM and above, normalized by the SDF (down), and is a proxy for preferences for upside potential.
The upward side slope is normalized by the downside slope as discussed in Section 5. Time-series
regressions are performed separately for individual Morningstar investment categories. We report
t-statistics computed using the Newey and West (1987) autocorrelation and heteroskedasticity con-
sistent standard errors.

Large Growth Large Value Large Blend

Coefficient t-stat. Coefficient t-stat. Coefficient t-stat.
Const. -0.8110 -1.80 1.5693 1.34 -0.2499 -0.64
SDF (up norm.) 1.0453 2.44 -2.5265 -1.91 -0.0882 -0.22
SDF(down) -0.0097 -0.04 0.5107 1.73 0.1986 1.44
Market Ret. 0.0958 4.33 0.0195 0.29 0.0423 1.82
Category Ret. 0.0319 5.72 0.0471 4.30 0.0172 2.70
Passive Flow 5.2739 5.40 1.8013 0.54 0.7516 4.02
Adj. R-sq 0.4277 0.1975 0.4411
N (obs.) 155 155 155
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Table 14: Flow to Medium and Small Active Funds as a Function of Option-Implied
Risk Attitude. This table reports the coefficient estimates from regressing the average monthly
flows into actively managed medium-cap and small-cap funds on Prelec α and β, controlling for
average flows into passive funds of the same category, lagged category return, and market returns
as proxied by the average monthly CRSP value-weighted index returns during the prior six months.
Prelec α is orthogonalized against β. Time-series regressions are performed separately for individual
Morningstar investment categories. We report t-statistics computed using the Newey and West
(1987) autocorrelation and heteroskedasticity consistent standard errors.

Medium Growth Medium Value Medium Blend

Coefficient t-stat. Coefficient t-stat. Coefficient t-stat.
Const. 4.0044 2.64 6.7572 1.82 4.0106 4.17
Prelec Alpha -1.0630 -2.66 1.3219 0.74 1.0255 1.14
Prelec Beta -4.3290 -2.72 -6.3686 -1.36 -4.1750 -3.55
Market Ret. 0.1093 2.70 0.0652 0.33 -0.0549 -0.53
Category Ret. 0.0501 3.39 0.1359 2.60 0.0670 4.93
Passive flow 4.7876 2.58 -2.3450 -1.23 0.4975 1.19
Adj. R-sq 0.2767 0.1242 0.1748
N (obs.) 83 81 155

Small Growth Small Value Small Blend

Const. 1.9534 1.08 3.6568 4.50 2.9931 3.12
Prelec Alpha* -1.0551 -1.66 -0.3092 -0.36 0.3446 0.51
Prelec Beta -1.9813 -0.97 -3.6327 -3.79 -3.0017 -2.96
Market Ret. 0.0102 0.18 -0.1132 -0.86 -0.021 -0.27
Category Ret. 0.0425 5.09 0.0874 4.27 0.0524 7.01
Passive flow 3.8730 1.82 0.8529 2.26 1.8114 3.70
Adj. R-sq 0.1355 0.2120 0.3241
N (obs.) 127 155 155
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