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Abstract

Building on insights from the economics of superstars, I develop an

efficient method for estimating the skill of mutual fund managers. Outliers

are especially helpful for disentangling skill from luck when I explicitly

model the cross-sectional distribution of managerial skill using a flexible

and realistic function. Forecasted performance is dramatically improved

relative to standard regression estimates: an investor selecting (avoiding)

the best (worst) decile of funds would improve risk-adjusted performance

by 2% (3%) annually. Forecasted performance also helps to predict fund

flows, consistent with the smart money effect. The distribution of skill

is found to be fat-tailed and positively skewed; its shape helps to explain

the convexity of fund flows.

1 Introduction

With over $3 trillion in aggregate assets under management, the scale of the ac-

tive mutual fund industry is a testament to the conviction among investors that

skilled managers exist and can be identified in advance. Yet the unpredictabil-

ity of good performance remains the principal stylized fact in the mutual fund

literature, and is often interpreted to imply the absence of skill among fund

managers and the inability of investors to benefit from active mutual funds.1 In

1Berk and Green (2004) propose a model that reconciles unpredictability with the existence
of skill, but all benefits from skill accrue to fund managers rather than their investors.
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this paper, I will show that this “fact” is the consequence of strong, unrealistic,

and often implicit assumptions about the distribution of “alpha”—namely that

alphas are independent across funds, or that alpha is normally distributed. I

propose a hierarchical model of investment performance that relaxes both as-

sumptions, and I provide empirical support for alternative “facts”: alphas are

predictable, and extreme performance is not always luck.

The assumption that alphas are independent across funds is what justifies

any fund-by-fund approach to performance evaluation.2 Although seemingly

reasonable, Jones and Shanken (2005) show that this is equivalent to assum-

ing, counterfactually, that the distribution of alphas across managers is known.

In the realistic case where the distribution of alphas is acknowledged to be un-

known, the returns of all funds intuitively help to illuminate the abilities of fund

managers as a group, which in turn enables improved inference for any partic-

ular fund. Jones and Shanken present a hierarchical model that formalizes this

cross-sectional “learning across funds”.

They also impose normality on the cross-sectional distribution of alpha, but

there is little evidence that alpha follows this convenient form.3 Rather, it is

a modeling choice intended to improve inference by reducing the influence of

outliers. When extreme alpha estimates are thought to be spurious, reasonable

remedies include shrinkage towards a normal distribution, or still more cautious

parameter filters that simply drop funds with estimated alphas outside some

allowable range.4 The surviving funds’ alphas can be interpreted with greater

confidence, but little is learned about the dropped funds. This is a disadvantage

of employing such sharp, and inherently subjective, parameter filters. But the

larger cost of treating outliers as problematic statistical artifacts is that the

extreme alphas might instead be the most interesting and informative cases—

economic rather than statistical outliers.

The “superstars” literature documents convex returns to talent across a

range of disciplines. Rosen (1981) describes the phenomenon: “In certain kinds

of economic activity there is concentration of output among a few individu-

als, marked skewness in the associated distributions of income, and very large

2Carhart (1997) uses OLS, but more recent methods allow substantially improved inference.
See, e.g., Pástor and Stambaugh (2002), Bollen and Busse (2005), and Mamaysky et al. (2007).

3Kosowski et al. (2006) and Fama and French (2010) employ distinct bootstrap techniques
and document non-normalities in the alpha distribution. Kosowski et al. find more pronounced
non-normalities than do Fama and French. They also find stronger evidence of positive alphas
net of fees.

4Mamaysky et al. (2007) use a Kalman filter to estimate alphas and market betas, and

then drop funds where
(
α̂, β̂mkt

)
falls outside a predefined region.
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rewards at the top.” Subsequent work explores the pronounced disparities in,

for example: CEO compensation, rock concert revenues, television ratings for

NBA games, and citation counts for finance academics.5 Across diverse fields of

endeavor, observed outcomes are distinctly non-normal and positively skewed,

regardless of the distribution of underlying, and unobservable, talent. Viewed

through this lens, extreme alphas are the natural result of differences in innate

investment skill.

This perspective requires some semantic clarification. Alpha is often consid-

ered synonymous with investing skill, but these are distinct concepts. Invest-

ment skill itself—like the related attribute of intelligence—cannot be directly

observed, although it is associated with observable manager characteristics.6

Alpha is a measure of investment performance, an outcome that we expect to

be increasing in managerial skill. The economics of superstars shows that the

mapping between talent and outcomes is often convex, and that extreme alphas

may be the rule rather than the exception. The approach to performance eval-

uation in this paper incorporates these insights.7 (For the sake of consistency

with the mutual fund literature, alpha and skill are used interchangeably in the

rest of this paper.)

I present a hierarchical model where the cross-sectional distribution of alpha

is described by a mixture-of-normals, and each fund manager represents a draw

from this distribution. The mixture-of-normals is a flexible and realistic model-

ing choice, allowing—but not imposing—both skewness and fat tails. The data

will dictate whether these features are present.

Out-of-sample tests reveal significant short-term alpha predictability. The

“mixture” alphas are striking improvements over the estimates from OLS, which

in turn outperform alphas from a hierarchical model with a normal cross-

sectional distribution: imposing the wrong structure on the cross-section of

alpha can be worse than imposing no structure at all. The bottom decile port-

folio of mutual funds formed using the mixture-of-normals distribution is more

than twice as bad as the OLS bottom decile portfolio, while the top “mixture”

portfolio is nearly twice as good as the OLS top portfolio. (The alphas of the

top and bottom “mixture” decile portfolios are +5.4% and -6.1%, respectively.)

5These four examples are from Gabaix and Landier (2008), Krueger (2005), Hausman and
Leonard (1997), and Chung and Cox (1990), respectively.

6See, e.g., Chevalier and Ellison (1999), Cohen et al. (2008), and Coval and Moskowitz
(2001) who relate managerial performance to undergraduate institution quality, social ties to
corporate board members, and geographic proximity, respectively.

7The distinction between alpha and skill is also central to the model of Berk and Green.
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I find that the true distribution of alpha is fat-tailed and positively skewed,

consistent with the economics of superstars. I also find that fund flows are

sensitive to these “mixture” alphas—evidence that investors respond to, and

benefit from, the skills of mutual fund managers. Finally, I show that the non-

normality of the alpha distribution can help to explain the convexity of fund

flows.8

The rest of the paper proceeds as follows. Section 2 describes the hierarchical

model in detail. Section 3 explains the data used for the analysis. Section 4

presents the main empirical results. Section 5 discusses these results and their

relation to the mutual fund literature. Section 6 concludes.

2 Model

I adopt a hierarchical Bayesian model, similar in spirit to Jones and Shanken

(2005), that allows for skewness and fat-tails in the cross-sectional distribution

of managerial skill. The parameters of this distribution are determined by the

data, including “outliers”. Skill is measured relative to a four-factor model

including the Fama and French (1993) factors and the momentum factor of

Carhart (1997). Prior distributions are weakly informative—proper but diffuse.

2.1 Background

The (semi-strong) efficient markets hypothesis implies that abnormal mutual

fund returns should not persist. Carhart (1997) provides strong supporting ev-

idence: adjusting for a momentum factor in addition to the three Fama-French

(1993) factors produces ranked portfolios of mutual funds without significant

persistence among top performing funds. However, Berk and Green (2004)

showed that if fund returns are decreasing functions of assets under manage-

ment, the absence of persistence in factor-model skill estimates is not incon-

sistent with the existence of skill.9 Furthermore, studies using shorter holding

periods than the one-year holding periods employed by Carhart have found

evidence of persistence.10 Skill may indeed exist, but it appears difficult to

identify.

8Fund flows are much more responsive to high performance than to poor performance.
9Berk and Green (2004) also assume rational investor learning in the context of a common-

knowledge prior on the distribution of skill. This is an unrealistic feature of their model.
10See, e.g., Bollen and Busse (2004).
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Imperfect empirical methodologies may explain the difficulty. Jones and

Shanken (2005) observe that “. . . the maximum OLS alpha estimate [among a

population of funds] becomes unbounded as the number of funds approaches

infinity, even when the true alphas are all zero.”11 Mamaysky et al. (2007)

demonstrate that “. . . sorting on the estimated alphas populates the top and

bottom deciles not with the best and worst funds, but with those having the

greatest estimation error.” Carhart’s result appears less damning upon reconsid-

eration: alpha may seem non-persistent simply because it is poorly measured.

One “solution” is to drop funds with suspiciously extreme alphas. Another

approach is to use shrinkage estimators.12 Bayesian inference automatically

incorporates shrinkage towards a prior distribution. Inferences are made on all

funds, but the accuracy of the posterior estimates depends very strongly on the

shape of the prior.

Baks et al. (2001) employ a prior on skill consisting of the right tail of a

truncated normal distribution and a probability mass at the point of truncation.

They provide a procedure for eliciting the parameters of this prior from the

investor. Jones and Shanken use a normal prior on skill but do not specify its

mean or variance, instead estimating these along with all fund-level parameters

in a hierarchical procedure. Both priors are simple, but they do not reflect the

richness of the true distribution of skill.

Kosowski et al. (2006) document a complex non-normal distribution of mu-

tual fund alphas. They note that “the separation of luck from skill becomes ex-

tremely sensitive to the assumed joint distribution from which the fund alphas

are drawn” and motivate their non-parametric bootstrap approach by invoking

the “intractability of parametrically modeling the joint distribution of mutual

fund alphas across several hundred funds.” This paper tackles the same problem

head-on. The prevailing cross-sectional distribution of skill among mutual fund

managers is indeed complex, but it is not intractable.

2.2 Model specification

Excess fund returns are assumed to follow a standard linear factor structure,

Rjt −R
f
t = αj + Ftβ

j + εjt , (1)

11They assume a standard factor model with independent residuals, as in (1).
12See Efron and Morris (1977) for an introduction to shrinkage estimation.
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where εjt ∼ N
(
0, V jε

)
, factor loadings βj and residuals εj are cross-sectionally

uncorrelated, and the T ×K matrix of factor returns F is observable.

The investor assumes that true manager alphas are independent draws from

a finite mixture of two normal distributions, with density

f
(
αj
)

=

N∑
i=1

wi ·
1√
Vi
· φ
(
αj − µi√

Vi

)
, (2)

where N = 2, φ (x) is the standard normal density, µi and Vi are the un-

known mean and variance of mixture component i, and the wi are unknown

non-negative weights that sum to one.13 This conditional distribution of alpha

is simple and flexible, allowing both skewness and excess kurtosis in the cross-

section of managerial skill but imposing neither.14 It also suggests an intuitive

interpretation of the two mixture components as “good” and “bad” manager

types.

Greater flexibility could be achieved at the expense of parsimony. Increasing

the number of normal mixture components is straightforward, although interpre-

tation is problematic for N ≥ 4. One could alternately employ finite mixtures

of Student’s t or Laplace distributions—imposing excess kurtosis—or a more

general unimodal skewed distribution.15

In the absence of strong justification for any specific alternative distribution,

however, it is reasonable to begin with the simplest choice that allows some

variability in skewness and kurtosis. The distribution in (2) fits the bill, while

minimizing computational complexity and the impact of specification searching.

2.3 Bayesian approach

The hierarchical model defined by (1) and (2) is conceptually simple, yet es-

timation with classical methods is not feasible. Consider the sheer number of

parameters: for each of the J funds there are K + 2 parameters, in addition

13Without additional restrictions, the mixture of normals in (2) is not identified. An ad-
ditional identifying restriction, µ2 ≥ µ1, is imposed without loss of generality to allow esti-
mation. Stephens (2000) describes the problem in more detail and proposes an alternative
resolution.

14The distribution is conditional because it depends on the unknown population hyper-
parameters (µi, Vi, wi) that will be estimated along with the fund-level parameters(
αj , βj , V jε

)
.

15See Fernández and Steel (1998) for a general approach to modeling skewed unimodal
distributions in a Bayesian context. Their method allows skewness and kurtosis to vary
independently; an advantage over the simpler model in (2).
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to 5 population-level hyper-parameters.16 For any reasonable values of J and

K, the prospects for successfully implementing a high-dimensional numerical

optimization, as required by MLE or GMM, are dim.

The Markov chain Monte Carlo (MCMC) approach to the estimation of

Bayesian models breaks this curse of dimensionality. Rather than dealing di-

rectly with a single intractable [J · (K + 2) + 5]-dimensional joint posterior dis-

tribution, we can equivalently work with the [J · (K + 2) + 5] individual 1-

dimensional conditional posterior distributions, which together fully charac-

terize the joint posterior distribution. This equivalence is guaranteed by the

Hammersley-Clifford theorem.17

2.4 Prior specification

A complete Bayesian model requires both likelihoods and priors. The former

are defined by (1) and (2). The latter are described below.

An ideal prior distribution (i) accurately represents the investor’s prior in-

formation and beliefs while (ii) enabling easy sampling from the posterior dis-

tribution. The second condition is often automatically satisfied by a conjugate

prior, which gives rise to a known analytical posterior distribution from the

same family as the prior. For example, a normal prior and a normal likelihood

result in a normal posterior. Conjugacy is a valuable property, but is not always

consistent with (i). In such cases, I relax (ii) in favor of (i).

A common criticism of Bayesian inference is that the inherently subjective

prior distribution can exert substantial influence on posterior parameter esti-

mates. I minimize subjectivity by choosing intentionally uninformative priors.

By this, I mean diffuse proper distributions. These are sometimes also called

weakly informative priors to distinguish them from improper priors.18

Putting aside complex approaches to uninformative priors that are them-

selves subject to criticism,19 I follow the pragmatic lead of Leamer (1978):

16The K+ 2 parameters are the managerial skill and the idiosyncratic variance, in addition
to K factor loadings.

17See, e.g., Robert and Casella (2004).
18Any valid probability density must have a finite integral over the relevant parameter

space. An improper prior is a function whose integral is infinite, hence the impropriety.
Typical improper priors would be f (θ) ∝ 1 for a location parameter, or f (σ) ∝ 1

σ
for a scale

parameter. While superficially appealing, such priors do not always lead to valid posteriors.
(See, e.g., Lindley (1972).) They are not even uninformative. The improper prior f (θ) appears
to be uninformative with respect to θ, but it also suggests that |θ| is extraordinarily large and
that 1

θ
is very close to zero.

19For example, the Jeffreys prior or Zellner’s g-prior.
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“. . . we can find a prior distribution that will have little impact on

the posterior. It is important to understand that this is not a prior

intended to represent ignorance. . . In practice, the sample may dom-

inate the prior information and the posterior distribution may be

inconsequentially different from a posterior distribution correspond-

ing to an improper [uninformative] prior. A prior density that is

relatively uniform where the likelihood function attains its maximum

is likely to imply such a posterior.”20

The priors on µi and each βjk are independent normal distributions with

means of zero and large variances, with the exception of βjmkt which has a prior

mean of one. The priors on Vi and V εj are independent gamma distributions

with shape parameters of one and large scale parameters.21 The prior on w =

[w1, ..., wN ] is a Dirichlet distribution with an N × 1 vector of ones as the

parameter.22 The prior on αj is already defined by (2). See Appendix A for

a detailed presentation of the prior and posterior distributions for all model

parameters.

2.5 Hierarchical structure

Having specified a complete Bayesian model in some detail, it may seem self-

defeating to select priors that convey no information. Such a view overlooks

the importance of the hierarchical structure of the model. The power of this

structure to influence posterior parameter estimates is not undone by arbitrarily

diffuse priors, as long as they are proper.23 Indeed, the chief justification for

choosing diffuse priors is to ensure that the estimation results are driven by the

model itself rather than any specific choice of priors.

If we altered the model to eliminate (2) and estimated (1) with diffuse priors,

this would be equivalent to OLS. However, the estimates generated by the full

model are radically different from those given by OLS—these differences must

be attributed to the hierarchical structure itself.

20pp. 61-63, emphasis added.
21A more common choice would be inverse-gamma distributions, which have the virtue of

conjugacy. However, these are not consistent with condition (i) or Leamer’s rule of thumb,
especially when the posterior parameter estimates are likely to be close to zero. See Gelman
(2006).

22This results in a marginal prior for each wi that is beta distributed with parameters 1
and N − 1. For the degenerate case where N = 2 that is employed here, this is simply the
uniform distribution on the unit interval.

23Improper priors are another story, since they can effectively preclude the cross-sectional
learning that is integral to hierarchical model estimation.
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3 Data

Mutual fund data are obtained from the CRSP Survivor-Bias-Free US Mutual

Fund Database, which begins in 1961. Monthly returns are net holding period

returns—all estimated alphas are after costs and management fees.24 This

takes the perspective of an investor considering allocating capital to active fund

managers, rather than that of a philosophical investigation of the existence of

skill. Alpha only matters to the extent that it exceeds costs.

Monthly factor returns are obtained from Kenneth French’s website via

WRDS. I use a four-factor model, consisting of the three Fama-French factors

and a momentum factor, throughout the analysis.

The CRSP data are incomplete in several key ways. Multiple share classes

of a single fund appear as separate funds in CRSP, with no foolproof way of

identifying and grouping them. Addressing this shortcoming is especially im-

portant in this analysis, since double-counting funds would impair estimation

of the cross-sectional distribution of skill. Furthermore, CRSP data regarding

fund objectives and fund managers are not comprehensive. Each of these is

addressed in turn.

3.1 Multiple share classes

The cross-sectional distribution of skill in (2) can only be estimated if each fund

in the sample represents a distinct draw from the distribution. Many mutual

funds have multiple share classes, and each class appears in the CRSP database

as a separate fund. To proceed with the analysis, these “funds” need to be

identified in order to avoid double-counting. Unfortunately, there is no explicit

share class variable in the database.

CRSP suggests matching “funds” that share the same portfolio of holdings,

but portfolio data are not available until 1998. The only alternative is to exam-

ine management company and fund names, matching as deemed appropriate.

This latter approach is employed here.

Funds without fund name data are consequently excluded from the analysis.

This affects approximately 10% of the funds at the beginning of the sample in

1961 but generally disallows less than 5% of all funds.

24To reconstruct gross returns, one should add back management expenses and trading
costs. Expense ratios are available for most funds, so these could be added back to the
reported net returns. However, trading costs would need to be estimated in order to compute
approximate gross returns. See, e.g., Wermers (2000) and French (2008).
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Figure 1: Levenshtein distances of all pairs of fund names. Panel A shows the
entire CRSP sample. The mode is quite large – between 40 and 50. Panel B
zooms in to show only distances less than or equal to 10, clearly indicating the
presence of a secondary mode at 1.

Fund names of the remaining funds are filtered to remove all non-alphabetic

characters and extra spaces. Based on the general pattern that share classes of

the same fund will have the same name followed by a suffix denoting the share

class, funds are then grouped according to their names’ pairwise Levenshtein

distances.25 Panel A of Figure 1 shows a histogram of all pairwise Levenshtein

distances for the entire sample of 20,000+ funds. The mode is between 40 and

50, and it appears that very few pairs of funds have similar names. Panel B

of Figure 1 shows the same histogram only for distances less than or equal to

10. Here we can see that there is a secondary mode for distances equal to 1.

Although most random pairs of funds have names that are nothing alike, some

pairs have names that are nearly identical.

Funds with Levenshtein distances less than 3 are assumed to be share classes

of a single actual fund. From each grouping of fund share classes, the class with

the most assets under management is retained to represent the fund. Figure 2

shows the total number of “funds” in the CRSP database, the number of funds

25The Levenshtein distance between two strings is the minimum number of edits needed
to transform one string into the other, with the allowable edit operations being insertion,
deletion, or substitution of a single character. See Levenshtein (1966).
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Figure 2: Number of funds in the sample before and after the share class filter.
Essentially all funds have fund names recorded in the database (dashed line),
but the majority do not survive the share class filter (dotted line).

that have fund name data, and the number of true funds that survive the share

class filter.

3.2 Fund objectives

This analysis is confined to actively managed domestic equity mutual funds.

Fund names and Lipper class (where available) are screened to drop money

market, bond, balanced, and international funds. Index funds are identified

by screening fund names for explicit references to indexing. Closet indexers

cannot be identified in this way, and any such funds remain in the sample.

This corresponds to the challenge faced by investors in prospectively identifying

closet indexers. Furthermore, such funds will in general have estimated alphas

close to zero, less their trading costs and management fees. They are unlikely

to populate the highest or lowest deciles of ranked mutual funds, which are the

basis of the key results of this study.
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Figure 3: Effect of requiring fund manager information on sample size. The
solid line represents the fund sample used in the rest of the analysis. The
sudden jump in the number of funds in 2007 corresponds to a change in the
data sources used by CRSP.

3.3 Fund managers

Data on fund managers in the CRSP database are not comprehensive. No

manager name data is available before 1998. Even after 1998, in many cases,

the fund manager field is missing or recorded as team.26 Utilizing individual

fund manager data is therefore not feasible without impoverishing the sample.

The full impact of requiring individual manager data is depicted in Figure 3.

One consequence of the lack of reliable manager data is that the funds them-

selves become the objects of analysis. Ideally, when a fund changes its portfolio

manager, the new prior on its alpha would depend on the new manager’s previ-

ous fund’s returns. Since the data do not allow managers to be tracked in this

way, I use funds’ returns as if no management changes have occurred.27 This

does not introduce any bias but does weaken the model’s predictive ability for

funds that have changed managers during the evaluation period.

26Massa et al. (2010) discuss why fund management companies may elect to have anony-
mously managed funds.

27This approach assumes fund returns are generated according to (1) and depend only on
the fund manager. If the fund family makes a difference, then future returns are related to
past returns even after a managerial change. Brown and Wu (2011) estimate such a model in
a Bayesian setting.
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4 Results

For each month, alphas are estimated for all funds with at least 12 monthly

observations during the 2-year window [t− 23, t]. Funds are evaluated using

each of three methods: OLS, hierarchical Bayes with a mixture-of-normals prior,

and hierarchical Bayes with a “standard” normal prior.28 All funds are ranked

according to their estimated alphas and assigned to deciles. Funds that are

missing during month t+ 2 are dropped; equally-weighted portfolios are formed

from the remaining funds.29 These portfolios are held for one month and then

rebalanced according to the updated alpha estimates.

Following Busse and Irvine (2006), the alpha of each of these decile portfolios

is estimated using standard OLS regressions. When estimating the alpha of a

portfolio of funds, there is likely to be little difference between the OLS measure

and any reasonable Bayesian measure based on the same model. Using the OLS

post-ranking-period measure avoids any bias that could result from using the

Bayesian measure for both the ranking-period and the post-ranking-period.

4.1 Parameters of the mixture-of-normals distribution

Posterior means and 95% confidence intervals of the parameters in (2) are shown

in Figure 4 and Figure 5. Each rolling estimation window is 24 months long, so

the estimates depicted for month t correspond to fund performance during the

window [t− 23, t].

Figure 4 shows posterior estimates of both mixture component means, µ1

and µ2, and the weight on the second mixture component, w2. By construction,

and without loss of generality, the mean of the second component is greater than

or equal to the mean of the first component. Panel A shows that µ1 is generally

indistinguishable from zero, although it does diverge from zero towards the end

of the sample – positively during the very early 2000s and negatively since

then. Panel B shows that µ2 follows a pattern similar to µ1, essentially always

statistically equal to zero. Panel C shows that the proportion of managers drawn

from the second, high skill, component has always been low and has steadily

decreased over time – falling from 20% at the start of the sample to 10% at the

end.

28This last method follows Jones and Shanken (2005) and allows a direct assessment of the
value of using a sufficiently flexible prior distribution.

29A one-month gap is introduced between the ranking-period and the post-ranking-period
to eliminate spurious microstructure-induced correlations.
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Figure 5 shows posterior estimates of the standard deviations of both mixture

components. Far more managers are drawn from the first component, so the

confidence intervals on
√
V1 are much tighter than those on

√
V2. Nevertheless,

it is clear that
√
V2 is an order of magnitude larger than

√
V1.

The overall distribution has substantial excess kurtosis because the indi-

vidual variances are unequal; in this case V2 � V1. This, plus the fact that

µ2 > µ1 gives rise to positive skewness as well. Both findings are consistent

with the economics of superstars.

Although one virtue of the mixture-of-normals distribution was the poten-

tially straightforward interpretation of the components as good and bad man-

ager types, the high dispersion of the second mixture component suggests a

similar but more nuanced interpretation. Managers with extremely high or low

relative alphas are likely to be drawn from the second mixture component, con-

sistent with positively correlated alpha and risk-taking: managers drawn from

this high-alpha, high-variance component are taking aggressive risks that pay

off on average but that expose their funds to significant losses.

4.2 Comparison of skill distribution moments, by prior

Posterior moments of the distribution of skill for all three “priors” are shown in

Figure 6.30 Moments for both hierarchical Bayes priors—normal and mixture-

of-normals—are computed directly from their posterior parameter estimates.

Moments for the OLS distribution are computed from the estimated fund alphas.

Panel A compares the estimated means of the prevailing distribution of skill

from OLS and the mixture model. The estimated mean from the normal hi-

erarchical model is nearly identical to that of the mixture model and is not

depicted. The posterior mean from the mixture model behaves as we might

expect: it generally follows the OLS mean but shrinkage mitigates the larger

fluctuations.

Panel B compares the estimated standard deviations of the prevailing dis-

tribution of skill. The susceptibility of OLS to the influence of outliers is clear.

The normal hierarchical model generates the lowest estimates—shrinkage in

its strongest form. In between lies the estimated standard deviation from the

30OLS may not be an explicit Bayesian prior, but OLS estimates will exactly match Bayesian
estimates if the priors are dogmatically diffuse; e.g. normal distributions with infinite vari-
ances. If such strictly uninformative, improper priors are specified, there can be no shrinkage
and the posterior alpha estimates will depend only on the likelihood. Thus, Bayesian estima-
tion would yield the maximum-likelihood estimates for a regression model such as (1), which
are equivalent to the OLS estimates.
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in (2). The mean of the second component is constrained to be higher than the
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mixture hierarchical model. This model is flexible enough to take account of

extreme alphas without being dominated by them.

Panel C compares the estimated skewness of the prevailing distribution of

skill from OLS and the mixture model. The normal model, of course, is con-

strained to have zero skewness. OLS cannot decide whether skill is positively or

negatively skewed. Indeed, the series is so volatile and the excursions from zero

are so large (in both directions) that it cannot possibly correspond to reality.

The mixture model produces relatively stable and comprehensible estimates of

mild positive skewness.

Panel D tells a similar story via the kurtosis estimates. The normal model

is constrained to have a kurtosis of three, while both OLS and the mixture

model “agree” that kurtosis is likely to be much higher—although they diverge

regarding how much higher. Here is clear evidence that the default Bayesian

approach, with a normal prior on alpha, over-shrinks the estimated alphas in

this case. Fitting to a normal distribution assumes away large outliers, while a

more flexible model can learn from them.

4.3 Estimated cross-sectional distribution of alpha

The moments of the distribution of alpha are revelatory, but the distribution

itself completes the story. The overall distribution of skill is shown in Figure

7. This view makes the distribution appear normal, but the pivotal deviations

from normality are in the tails.

Understanding the tail behavior requires an examination of the individual

mixture components. Both components, scaled to reflect their relative weights,

are shown in Figure 8. The two components differ dramatically in terms of

relative weighting and dispersion. Component 1 represents approximately 85%

of all managers and requires that alpha is fairly close to zero. Component 2,

representing the remaining 15% of fund managers, allows for extreme alphas in

both directions.

Figure 9 illustrates this extreme tail behavior. Although component 1 assigns

approximately zero probability to alphas larger than 0.6% monthly, component

2 assigns small positive probabilities to alphas as high as 3% monthly. Rela-

tive to a normal model of alpha, which completely discounts the possibility of

“superstar” fund managers capable of dramatic outperformance, the mixture-

of-normals allows the upper echelon of managers to exhibit superior alphas.

18



-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

Α

p
HΑ
L

Figure 7: Overall estimated cross-sectional distribution of alpha from 2004,
summing the individual components shown in Figure 8. Alpha is monthly and
measured in percent. The distribution appears generally normal in this zoomed-
out view, since the weight on mixture component 1 is much larger than the
weight on mixture component 2. A closer examination of the tails, depicted in
Figure 9, reveals pronounced non-normality.
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Figure 8: Estimated mixture components from 2004, chosen to be representa-
tive. Component 1 is depicted by the solid line, while the higher-mean com-
ponent 2 is depicted by the dashed line. Alpha is monthly and measured in
percent. Component 2 has a slightly higher mean and a much higher variance
than component 1.
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Figure 9: Tail behavior in the cross-sectional distribution of skill from 2004—a
zoomed-in view of the distributions in Figure 8. Component 1 is depicted by
the solid line, while the higher-mean component 2 is depicted by the dashed
line. Alpha is monthly and measured in percent. The probability of observing
extremely high alphas is several orders of magnitude higher than it would be in
a model that imposed normality on alpha, a result of allowing for the second
component.

4.4 Decile portfolio performance

Decile portfolios are formed using all three ranking methods and their abnormal

returns are estimated using OLS. The power of the mixture-of-normals prior is

made clear in this test. Numerical results are given in Table 1 and shown

graphically in Figure 10.

Even OLS reveals substantial short-term predictability. The worst funds

(deciles 1 and 2) continue to under-perform and the best funds (deciles 9 and

10) continue to outperform. Carhart documented persistent poor performance

over a longer time frame, attributing it to high fees. Bollen and Busse, among

others, have more recently documented persistent outperformance in the short

term using OLS. Thus, the results from the OLS decile portfolios are just as

expected.

Results using rankings from the normal hierarchical model are telling—they

are substantially weaker than those from OLS. The performance of the bottom

decile portfolio is better than the OLS bottom decile portfolio, and the perfor-

mance of the top decile is worse. The normal prior does a worse job of sorting
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Out-of-Sample Monthly Alphas of Decile Portfolios

Decile OLS Normal Prior Mixture Prior

1 -0.21* -0.14* -0.51*
(0.05) (0.04) (0.03)

2 -0.12* -0.16* -0.37*
(0.04) (0.04) (0.04)

3 -0.07 -0.09* -0.34*
(0.04) (0.04) (0.04)

4 -0.05 -0.07 -0.18*
(0.03) (0.04) (0.04)

5 -0.03 -0.02 -0.10*
(0.03) (0.04) (0.04)

6 0.00 0.04 0.25*
(0.03) (0.08) (0.05)

7 0.03 0.08 0.25*
(0.03) (0.05) (0.05)

8 0.06 0.06 0.32*
(0.04) (0.04) (0.04)

9 0.10* 0.15* 0.36*
(0.04) (0.05) (0.04)

10 0.27* 0.15* 0.45*
(0.07) (0.04) (0.04)

Table 1: Out-of-sample monthly alphas of decile portfolio by ranking method,
1961-2010. At the end of each month t, alphas are estimated for each mutual
fund using each method and the past 24 monthly returns. Funds are ranked,
and equally-weighted decile portfolios are formed and held during month t+ 2.
Alphas for these portfolios are estimated using OLS, with bootstrapped standard
errors.
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Figure 10: Out-of-sample OLS alphas and 95% confidence intervals for decile
portfolios, by ranking method, 1961-2010. Data are taken from Table 1. Panel
A shows decile portfolios formed from funds ranked on their OLS alphas. Panel
B shows decile portfolios formed from funds ranked on their hierarchical Bayes
alphas with a normal prior. Panel C shows decile portfolios formed from funds
ranked on their hierarchical Bayes alphas with a mixture-of-normals prior.
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funds. There is valuable information in the extreme alpha estimates that the

normal model is forced to disregard.

The results from the mixture hierarchical model are striking: all portfolios

have statistically significant alphas, decile 1 under-performs OLS decile 1 by 30

basis points and decile 10 outperforms OLS decile 10 by 18 basis points. When

annualized, these translate to 360 basis points and 216 basis points, respectively.

The differences relative to the normal hierarchical estimates are even starker.

In absolute terms, the mixture decile 1 portfolio posts an annual alpha of -6.1%

and the mixture decile 10 portfolio posts an annual alpha of +5.4% during the

fifty-year period 1961-2010. The mixture bottom decile portfolio is more than

twice as bad as the OLS bottom decile portfolio, while the mixture top decile

portfolio is nearly twice as good as the OLS top decile portfolio.

4.5 Fund-by-fund alpha correlations

The mixture model generates superior portfolios of funds; its fund-level esti-

mates are better as well. Using the same two-year estimation windows, we can

compare the estimated fund alphas for the interval [t− 23, t] to the estimated

alphas for the non-overlapping interval [t+ 2, t+ 25].31 Let the vector of esti-

mated fund alphas generated by a particular model k on the interval [ta, tb] be

denoted by α̂k[ta,tb], and define the correlation of the alphas on the first interval

with the alphas on the second interval to be

ρk1,k2t = correlation
(
α̂k1[t−23,t], α̂

k2
[t+2,t+25]

)
. (3)

Funds that do not appear in both intervals are dropped before the correlation

is computed. I expect that the typical fund used in this part of the analysis is

consequently better than average. Even if the level of alpha is biased upwards,

this does not imply that the serial correlation is biased.

When comparing the performance of two models, k1 and k2, in predicting

the estimates generated by model k3, it is also useful to define:

k1,k3∆k2,k3
t = ρk1,k3t − ρk2,k3t . (4)

31By evaluating the estimation methods in this way, I assume that the short-term pre-
dictability in fund alphas is not completely offset by any un-modeled longer-term negative
correlation.
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Panel A: Serial Correlation of Estimated Fund Alphas, by Method

ρOLS,OLSt ρNormal,Normalt ρMixture,Mixture
t ρNormal,OLSt ρMixture,OLS

t

0.141* 0.116* 0.171* 0.104* 0.159*
(0.006) (0.005) (0.005) (0.004) (0.005)

Panel B: Differences in Serial Correlations of Estimated Fund Alphas

Normal,Normal∆OLS,OLS
t

Mixture,Mixture∆OLS,OLS
t

Mixture,OLS∆OLS,OLS
t

-0.025* 0.031* 0.019*
(0.006) (0.004) (0.004)

Table 2: In Panel A, serial correlations of estimated fund alphas are com-
puted for rolling, non-overlapping, two-year intervals, 1961-2010. In the last
two columns, the hierarchical models are used to predict OLS alphas. In Panel
B, differences in these correlations are reported.

Results are shown in Table 2.32 From the first three columns in Panel

A, we see that all alphas are positively serially correlated, consistent with the

predictability suggested by the performance of the decile portfolios. The last two

columns show the correlations of alphas generated by the hierarchical models in

the first period with the OLS alphas from the second period. These are positive

as well, and indicate that the positive serial correlations are not artifacts of the

Bayesian procedure.

Panel B of Table 2 shows the differences in the correlations. In the second

column, we can see that the mixture model’s estimates are indeed more strongly

serially correlated than the OLS estimates. Most critically, the third column

shows that the mixture model predicts the OLS estimates better than OLS

itself.

5 Discussion and Implications

The persistent performance of the decile portfolios is impossible to fully reconcile

with the rational model of Berk and Green (2004). In their model, managers

can possess investing skill but do not exhibit persistent non-zero alphas due to

convexities in the costs of managing their funds. As funds grow in size, positive

alpha becomes increasingly difficult to generate. In equilibrium all funds have

32The same analysis was also performed using rank correlations with essentially identical
results.
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zero alphas in expectation, but vary in size according to their managers’ varying

levels of skill. This equilibrium requires investors to evaluate managers in the

context of a known cross-sectional distribution of alpha, and to dynamically

re-allocate capital across funds in each period.

In contrast to the equilibrium predictions of Berk and Green, I find markedly

persistent performance in the short-term. At least one of their assumptions

must not hold. Costs may not be convex. Reuter and Zitzewitz (2010) use

fund flows associated with discrete changes in Morningstar fund ratings to show

that their effect on fund performance is inconsistent with the Berk and Green

hypothesis. There may be frictions associated with capital re-allocation that

prevent investors from responding immediately to new estimates of manager

skill.

The most indisputable deviation from the Berk and Green world, however,

is that investors do not know the true cross-sectional distribution of alpha. In

reality, as in the model presented here, this distribution and the individual fund

alphas must be estimated simultaneously. Such an analysis requires MCMC

methods—somewhat beyond the capabilities of the typical mutual fund investor,

or even the typical financial advisor. The sheer difficulty of the evaluation is

sufficient to cause slow learning, even among competent and vigilant investors.

Even if all of the other assumptions of Berk and Green hold, this slow learning

implies the short-term persistence of alphas that I document.

Flow predictability regressions presented below show that investors do re-

spond to the information contained in the Bayesian mixture alphas. Whatever

heuristics they employ to evaluate funds must incorporate the intuition of my

model if not its details.

5.1 Convexity of fund flows

Fund flows have a convex relationship with past fund performance. Outflows in

response to poor performance are less pronounced than the inflows in response

to good performance.33 Lynch and Musto (2003) offer an explanation: if poor

performance makes changes in investment strategy more likely, then poor per-

formance is less informative than good performance regarding future returns.

Berk and Green (2004) also predict a convex flow-performance relationship—a

consequence of the convex costs of management in their model.34

33See, e.g., Sirri and Tufano (1998) and Chevalier and Ellison (1997).
34See Figure 3 in Berk and Green (2004).
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Another possibility is that the optimal updating rule for posterior skill es-

timates is itself convex. While a normal prior (along with a normal likelihood)

gives rise to a linear updating rule, the mixture prior proposed here generates

an updating rule that is nonlinear for observed returns that are not extremely

far from zero, and convex over the region of greatest interest.35

Assume that the true cross-sectional distribution of skill is a mixture-of-

normals, as in (2). For comparison, I also consider a normal prior on skill. To

obtain the best approximation, the mean and variance of the normal prior are

set to match the mean and variance of the mixture distribution:

µ = (1− w2) · µ1 + w2 · µ2 (5)

and

V = (1− w2) · V1 + w2 · V2 + w2 · (1− w2) · (µ1 − µ2)
2

. (6)

Assume that fund returns are simply managerial skill plus Gaussian distur-

bances: a simplified version of the model in (1) with no risk factors.

After observing a single return R, investors update their estimates of man-

agerial skill. The posterior expectation of skill under the normal prior is:

Enormal [α] =

(
µ

V
+
R

Vε

)
·
(

1

V
+

1

Vε

)−1

. (7)

The posterior expectation of skill under the mixture prior is:

Emixture [α] =

N∑
w̃i·

i=1

(
µi
Vi

+
R

Vε

)
·
(

1

Vi
+

1

Vε

)−1

, (8)

where

w̃i =
wi√
Vi + Vε

· exp

[
−1

2
· (R− µi)2

Vi + Vε

]
. (9)

To make this more concrete, the posterior expectations, (7) and (8), of alpha

corresponding to each of these priors after a single return R are shown in Figure

11. Here we can easily see how sensitive the posterior beliefs are to the investor’s

prior, even when both possible priors have matching first and second moments.

35The details depend on the model parameters, but the intuition is that extreme obser-
vations are almost certainly drawn from the mixture component with the highest variance.
Since this component is normal, the updating rule has a linear asymptote.
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Figure 11: Updating rules for managerial skill with a mixture-of-normals prior
(dashed line) and a normal prior with matching first and second moments (solid
line). R is a monthly return measured in percent. The parameters of the mixture
distribution are: µ1 = −1, µ2 = 0, V1 = 0.01, V2 = 1, and w2 = 0.1. Plugging
these into (5) and (6), we get the following parameters for the “matching”
normal distribution: µ = −0.9 and V = 0.2. The updating rule for the normal
prior is linear. The updating rule for the mixture prior has a linear asymptote
but is nonlinear for non-extreme returns, and is generally convex for monthly
returns between -4 and +4 percent.
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The updating rule for the mixture prior is generally convex for non-extreme

monthly returns. If the relationship between skill estimates and observed returns

is convex, and the relationship between fund flows and skill estimates is not too

concave, we should expect to observe convex flows.

The mixture-of-normals prior is not special in this regard. Any non-normal

prior will generate a nonlinear updating rule. A more flexible prior than the

two-component mixture should be able to match the observed flow-performance

relationship even more closely.

5.2 Predictability of fund flows

This paper describes a method of accurately estimating mutual fund alphas

that fully exploits the information contained in the cross-section of funds. It is

natural to ask what resemblance this bears to the methods investors actually use

to evaluate funds. Although their methods are not observable, their conclusions

are revealed by the fund flow data.

Results for a series of fund flow predictability regressions are shown in Table

3. The dependent variable is the flow ratio, defined as the net fund flow divided

by the fund’s total assets under management in the previous month. Regression

(1) is patterned after the baseline regression model of Sirri and Tufano (1998).

This shows that investors are highly responsive to past returns, although they

are more responsive to high returns than to low returns—the effect of being in

the top quintile of past returns is positive and significant even after controlling

for average past returns, Rt −Rmkt. This convexity is a robust feature of mutual

fund flows.

Regression (2) adds the lagged OLS alpha as a predictor, while regression

(3) adds the lagged Bayesian mixture alpha. Regression (4) includes them both.

Regression (2) shows that investors are indeed responsive to the information in

OLS alphas. This information does not subsume the effect of past returns, but

the coefficient on Rt −Rmkt is somewhat closer to zero. Regression (3) shows

that investors are also responsive to the information in Bayesian mixture alphas.

In regression (4), we see that both the OLS alphas and the Bayesian mix-

ture alphas predict fund flows in a statistically significant manner. Although the

point estimate of the coefficient on the Bayesian mixture alpha is higher than

that of the OLS alpha, 0.33 versus 0.11, this difference is not significant. The

key finding is that the information contained in the Bayesian mixture alphas, in-

corporating knowledge of the skewness and excess kurtosis in the cross-sectional
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distribution of alpha, influences investors’ capital allocations, beyond the infor-

mation contained in OLS alphas and directly in past returns. Although not

statistically significant, it also appears that including the Bayesian mixture al-

phas, in regressions (3) and (4), decreases the convexity of fund flows, consistent

with the theoretical predictions of section 5.1.

5.3 Smart money effect

A general finding in the literature is that mutual fund flows help to predict

mutual fund performance.36 The “smart money” effect refers to the interpreta-

tion that investors are actually able to anticipate future fund performance and

allocate capital accordingly, but this is not the only interpretation.37 One way

to assess the “smartness” of investors is to examine the incremental impact that

estimated alphas have for fund return prediction, controlling for fund flows.

Table 4 presents estimates from a series of regressions seeking to explain

fund returns in terms of past flows and returns. Regression (3) shows that past

flows do predict fund returns; adding past returns in regression (4) weakens

the predictive power of flows. As expected, regressions (1) and (2) show that

including lagged OLS and Bayesian mixture alphas does improve fund return

prediction.

The most interesting results are from regression (5), which includes past flows

and both OLS and Bayesian mixture alphas. The coefficient on lagged flow ratio

remains significant—flows are predictive beyond the information contained in

estimated alphas. Had the coefficients on lagged flows all been insignificant, this

would have implied that alphas predict fund returns because both are driven

by managerial skill: flows are truly smart money. The failure of this test does

not imply that investors are not smart, however, since this is a joint test of the

accuracy of the estimated alphas and the smart money effect. But the strength

of the return predictability documented in section 4.4 and the relative weakness

of the flow predictability documented in section 5.2 suggest a mechanism other

than “smart money” for the predictability of fund returns by fund flows.

Also noteworthy is the coefficient on lagged OLS alphas in regression (5): it

is negative and significant. Controlling for Bayesian mixture alphas, future fund

returns are higher when OLS alphas are lower, and vice versa. This is a clear

36See, e.g., Gruber (1996) and Zheng (1999).
37For example, Lou (2011) presents evidence that fund return predictability is the conse-

quence of flow-induced price pressure on underlying stock holdings.
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Fund Flow Predictability, Fama-MacBeth Regressions

Flow Ratio (1) (2) (3) (4)

Top Return Quintile 0.62* 0.50* 0.38* 0.43*
(0.17) (0.16) (0.16) (0.16)

Bottom Return Quintile 0.10 0.21 0.26 0.39
(0.17) (0.18) (0.17) (0.27)

Rt −Rmkt (%) 2.45* 1.99* 2.14* 2.16*
(0.24) (0.27) (0.24) (0.35)

σ(Rt −Rmkt) (%) -0.04 -0.04 -0.04 -0.06
(0.03) (0.04) (0.03) (0.04)

Lagged Expense Ratio (%) -0.15 -0.13 -0.11 -0.09
(0.18) (0.17) (0.18) (0.18)

Total Flow into Fund Category ($M) 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)

Lagged Log(Assets Under Mgmt. ($M)) 0.36* -0.38* -0.38* -0.37*
(0.05) (0.05) (0.05) (0.05)

Lagged OLS α̂ (%) 0.13* 0.11*
(0.02) (0.05)

Lagged Bayesian Mixture α̂ (%) 0.65* 0.33*
(0.06) (0.14)

Constant 0.95 1.35* 1.67* 1.40*
(0.56) (0.58) (0.60) (0.64)

R2 0.09 0.09 0.09 0.10

Table 3: Results for Fama-MacBeth regressions predicting flow ratio, defined
as this month’s net flows divided by last month’s total assets under manage-
ment; 1963-2010. Regression (1) is based directly on the baseline regression in
Sirri and Tufano (1998), and shows both the responsiveness of flows to raw past
performance, as well as the convexity of fund flows. (2) adds OLS alphas as a
predictor, while (3) adds the Bayesian mixture alphas. (4) includes both alphas
as predictors. Although overall R2 does not change dramatically, the strongly
significant coefficients on the Bayesian mixture alphas indicate that they con-
tain information not contained in the other predictors, and that investors are
sensitive to this information.
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Figure 12: Estimated fraction of managers with positive alpha using the
Bayesian mixture model.

illustration of how poorly OLS distinguishes signal from noise in the context of

investment performance evaluation.

5.4 Value of active management

Even if some fund managers possess skill, investors do not benefit unless man-

agers generate positive alpha after management fees and trading costs. Since

all alphas in this study are estimated using net fund returns to the investor,

we can directly evaluate the prevalence of skill over time. Panel A of Figure 6

shows the overall mean of the prevailing distribution of skill—it does not diverge

substantially from the implied OLS mean—which seems to lend support to the

Berk and Green hypothesis: the typical fund has an alpha quite close to zero.

Looking at the mean alone is misleading, however. Figure 7 shows that the

prevailing distribution of skill also has fat tails and positive skewness. Instead

of simply examining the mean, it is more informative to compute the fraction

of managers with positive alpha directly from the estimated parameters of the

prevailing cross-sectional distribution. The results are shown in Figure 12.

Barras et al. (2010) classify funds as either unskilled, zero-alpha, or skilled,

and find that 75% of funds are zero-alpha while less than 5% are skilled.38

This paper uses fund-level data to estimate the underlying distribution—sharply

separating the negative and positive regions of skill. There is no need for a

38See Figure 4 in Barras et al. (2010) for a comparison to Figure 12. Their estimated
fraction of skill is both much lower and smoother than the estimates presented here.
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“Smart Money” Effect, Fama-MacBeth Regressions

Monthly Fund Return (%) (1) (2) (3) (4) (5)

Lagged OLS α̂ (%) 0.19* -0.15*
(0.01) (0.01)

Lagged Bayesian Mixture α̂ (%) 0.11* 0.11*
(0.01) (0.01)

Rt −Rmkt (%) 0.24* 0.17*
(0.01) (0.01)

Flow Ratio in month t−1 0.002* 0.001* 0.001*
(0.00) (0.00) (0.00)

Flow Ratio in month t−2 0.001* 0.00 0.00
(0.00) (0.00) (0.00)

Flow Ratio in month t−3 0.00 0.00 0.00
(0.00) (0.00) (0.00)

Constant 0.45* 0.53* 0.49* 0.38* 0.49*
(0.09) (0.09) (0.01) (0.01) (0.01)

R2 0.02 0.02 0.01 0.02 0.02

Table 4: Results for Fama-MacBeth regressions predicting monthly fund re-
turns; 1963-2010. (1) and (2) show the predictive power of OLS and Bayesian
mixture alphas, respectively. (3) shows that flows do help to predict fund per-
formance. They continue to predict performance when (4) past returns are
included, and (5) when OLS and Bayesian mixture alphas are included. This
evidence, combined with the results from sections 4.4 and 5.2, suggests that
“smart money” is not the principal mechanism explaining why fund flows pre-
dict fund returns.
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zero-alpha category unless there is a point mass at zero in the underlying skill

distribution. Kosowski et al. (2006) use a bootstrap approach to compute a

continuous measure of skill, and find that approximately 5% of managers show

evidence of skill net of costs.

The most recent estimates in Figure 12 suggest that approximately 20% of

managers have skill, although the fraction has been much higher in the past.

The volatility of the estimates over time and the magnitude of the maximum

estimates rightly suggest that the distribution has not been perfectly estimated.

Nevertheless, the decile portfolios performed well: an imperfectly estimated

distribution still greatly assists in the proper ordering of funds.

Even if sizeable fractions of managers possess skill after costs and fees, we

would like to know if the active mutual fund industry is providing value in

aggregate. Fama and French (2010) employ a bootstrap methodology and find

that the aggregate portfolio of mutual funds has a negative net alpha, although

there is evidence of superior skill in the extreme upper tail of the cross-sectional

distribution of skill.

This study used only one representative share class from each fund. To

construct a comparable net industry-wide alpha, we would need to take into

account all share classes of each fund, their expense ratios, and assets under

management, following French (2008). This has not been done, so the impor-

tant question of whether the industry provides value to investors remains open.

Even still, it is safe to speculate that such an analysis would have conclusions

somewhat more favorable to the mutual fund industry than French, given the

higher fraction of skilled managers found here.

6 Conclusion

The model explored in this paper is deliberately kept simple to focus atten-

tion on the sensitivity of alpha estimates to the assumptions made regarding

the cross-section of skill. Existing methodologies ignore the conclusions of the

“superstars” literature: the returns to investing skill are likely to be positively

skewed and fat-tailed. An optimal approach to performance evaluation should

take this into account and explicitly model the cross-sectional distribution of

alpha accordingly.

The hierarchical model I propose is such an approach. While it does not

impose skewness or excess kurtosis, it “learns” from the data that such features
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are indeed present. Despite the simplicity of the mixture-of-normals distribu-

tion, the resulting estimates for fund alphas exhibit strong predictability across

the entire population of funds—it is not merely the very best and the very worst

funds whose performance persists.

In addition to accurately measuring fund alphas, this model also provides a

possible explanation for the convexity of fund flows. Any non-normal prior on

the distribution of alpha will lead to a nonlinear updating rule: high observed

returns can exert much greater influence than low observed returns on the pos-

terior mean of a given fund’s alpha. The convexity of fund flows could thus be

a rational response to the non-normality of alpha.
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A MCMC Algorithm

This section provides details about the Bayesian inference procedure, includ-

ing the priors on all parameters and a step-by-step summary of the Markov

chain Monte Carlo (MCMC) algorithm used to generate samples from the joint

posterior distribution of the parameters.

A.1 Parameters to be estimated(
µi, Vi, wi, α

j , βjk, V
j
ε

)
for i = 1, ..., N ; j = 1, ..., J ; k = 1, ...,K; where N is the

number of mixture components in (2), J is the number of funds, and K is the

number of risk factors in (1).

A.2 Latent indicator

To simplify the estimation procedure, I introduce a latent J × 1 vector z, where

each element is Bernoulli distributed,39

zj ∼ Bernoulli (w2) . (10)

The conditional (on zj) prior on skill is now normal, instead of the original

mixture of normals in (2):

αj ∼ N
(
µzj+1, Vzj+1

)
. (11)

A.3 Priors

All priors are proper but diffuse. They are scaled to correspond to the monthly

percent returns used in the analysis. For example, an annual alpha of 12%

would appear here as 1.

µ1 ∼ N
(
apriorµ = 0, Apriorµ = 10

)
(12)

µ2 ∼ N
(
apriorµ = 0, Apriorµ = 10

)
· 1µ2≥µ1

(13)

Vi ∼ Gamma (1, 10) (14)

39In the general case with more than two mixture components, zj is categorically distributed
with vector parameter w.
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w ∼ Dirichlet
(
πprior =

(
1

1

))
(15)

βjmkt ∼ N
(
apriorβmkt

= 1, Apriorβ = 5
)

(16)

βjk ∼ N
(
apriorβ = 0, Apriorβ = 5

)
(17)

V jε ∼ Gamma (1, 5) (18)

A.4 Sampling algorithm

1. Draw z conditional on w, µi, Vi, α.

• Compute (vector) probabilities ω conditional on each mixture compo-

nent:

ωi =
1√
Vi
· φ
(
α− µi√

Vi

)
. (19)

• Compute (vector) unconditional posterior probability:

p2 =
ω2

ω1 + ω2
. (20)

• Draw z ∼ Bernoulli (p2).

2. Partition α conditional on z.

• Partition α into two vectors, α1 and α2, corresponding to those el-

ements of α from each of the mixture components, and let Ni =

rows(αi).

3. Draw Vi conditional on z, µi, αi.

• Because of the gamma prior, the posterior on Vi is not a known

distribution and is sampled using a random walk Metropolis-Hastings

draw.

4. Draw µi conditional on Vi, αi.
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• Compute posterior hyper-parameters for each mixture component:

Aposteriorµ,i =

(
1

Apriorµ

+
Ni
Vi

)−1

(21)

aposteriorµ,i

Aposteriorµ,i

=
apriorµ

Apriorµ

+

Ni∑
n=1

αi,n

Vi
(22)

• Draw µi ∼ N
(
aposteriorµ,i , Aposteriorµ,i

)
.

5. Impose identifying constraint µ2 ≥ µ1.

• If the most recent draws of µi violate this constraint, revert to the

previous values.

6. Draw w conditional on z.

• Compute posterior vector hyper-parameter:

πposterior = πprior +

(
N1

N2

)
. (23)

• Draw w ∼ Dirichlet
(
πposterior

)
.

7. Draw V jε conditional on Rj , F, αj , βj .

• Because of the gamma prior, the posterior on V jε is not a known

distribution and is sampled using a random walk Metropolis-Hastings

draw.

8. Draw βj conditional on Rj , F, αj , V jε

• Compute posterior hyper-parameters for each βjk:

Aposteriorβ,j,k =

(
1

Apriorβ,k

+
F

′

k · Fk
V jε

)−1

(24)

aposteriorβ,j,k

Aposteriorβ,j,k

=
apriorβ,k

Apriorβ,k

+

F
′

k ·Rj − αj ·
T∑
t=1

Fk,t − F
′

k · F−k · β−k

V jε
(25)

37



• Draw βjk ∼ N
(
aposteriorβ,j,k , Aposteriorβ,j,k

)
.

9. Draw αj conditional on zj , µzj+1, Vzj+1, β
j , V jε , F,R

j .

• Compute posterior hyper-parameters for each αj :

Aposteriorα,j =

(
1

Vzj+1
+

T

V jε

)−1

(26)

aposteriorα,j

Aposteriorα,j

=
µzj+1

Vzj+1
+

T∑
t=1

(
Rjt − Ft · βj

)
V jε

(27)

• Draw αj ∼ N
(
aposteriorα,j , Aposteriorα,j

)
.
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[29] Pástor, Ľuboš and Robert F. Stambaugh, 2002, Mutual fund performance

and seemingly unrelated assets, Journal of Financial Economics 63, 315-

349.

[30] Lynch, Anthony W. and David K. Musto, 2003, How Investors Interpret

Past Fund Returns, Journal of Finance 58, 2033-2058.

[31] Mamaysky, Harry, Matthew Spiegel, and Hong Zhang, 2007, Improved

Forecasting of Mutual Fund Alphas and Betas, Review of Finance 11, 359-

400.

[32] Massa, Massimo, Jonathan Reuter, and Eric Zitzewitz, 2010, When should

firms share credit with employees? Evidence from anonymously managed

mutual funds, Journal of Financial Economics 95, 400-424.

[33] Reuter, Jonathan and Eric Zitzewitz, 2010, How Much Does Size Erode

Mutual Fund Performance? A Regression Discontinuity Approach, NBER

Working Paper 16329.

40



[34] Robert, Christian P. and George Casella, 2004, Monte Carlo Statistical

Methods.

[35] Rosen, Sherwin, 1981, The Economics of Superstars, American Economic

Review 71, 845-858.

[36] Sirri, Erik R. and Peter Tufano, 1998, Costly Search and Mutual Fund

Flows, Journal of Finance 53, 1589-1622.

[37] Stephens, Matthew, 2000, Dealing with label switching in mixture models,

Journal of the Royal Statistical Society B 62, 795-809.

[38] Wermers, Russ, 2000, Mutual Fund Performance: An Empirical Decompo-

sition into Stock-Picking Talent, Style, Transactions Costs, and Expenses,

Journal of Finance 55, 1655-1695.

[39] Zheng, Lu, 1999, Is Money Smart? A Study of Mutual Fund Investors’

Fund Selection Ability, Journal of Finance 54, 901-933.

41


