
Time-varying asset volatility and the credit spread puzzle ∗

Redouane Elkamhi, Jan Ericsson, Min Jiang

PRELIMINARY DRAFT

Please do not quote

June 16, 2011

Abstract

Structural credit risk models have faced difficulties in matching observed market credit

spreads while simultaneously matching default rates, recoveries, leverage and risk premia - a

shortcoming that has become known as the credit spread puzzle. We ask whether stochastic

asset volatility, as an extension to this model class, has the ability to help resolve this puzzle. We

identify that although there are three ways in which uncertainty about asset risk can influence

spreads (asset risk volatility itself, dependence between the levels of risk and asset value and

finally volatility risk premia), in a calibration setting only the volatility risk premium channel is

economically significant. We show that this feature of a stochastic asset risk model allows it to

match historical spreads and equity volatility as well. We also provide estimates of the required

variance risk premia.
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1 Introduction

Structural credit risk models have met with significant resistance in academic research. First,

attempts to empirically implement models on individual corporate bond prices have not been suc-

cessful.1 Second, subsequent efforts to calibrate models to observable moments including historical

default rates uncovered what has become known as the credit spread puzzle - the models are unable

to match average credit spreads levels2. Finally, econometric specification tests further document

the difficulties that existing models encounter in explaining the dynamics of credit spreads and

equity volatilities3

In this paper, we develop a structural model with time-varying asset volatility in order to address

both the levels and dynamics of credit spreads. Our first contribution is to show that the presence

of a variance risk premium resolves the credit spread puzzle in terms of levels. Second, we show

that the modelling of stochastic asset volatility allows the model to explain time series of equity

volatilities while doing a better job at fitting time series of credit spreads at the individual firm

level. Finally, we provide estimates of the size of variance risk premia required to explain credit

spread levels and benchmark these to existing empirical evidence.

The credit spread puzzle is defined as the inability of structural models, when calibrated to default

probabilities, loss rates and Sharpe ratios, to predict spread levels across rating categories consistent

with historical market spreads. Huang and Huang (2003), hereafter abbreviated HH, perform this

calibration analysis for a broad and representative selection of models and find that, as an example,

the latter never predict spreads in excess of a third of the observed levels for 4- and 10-year debt

issued by A-rated firms. The performance is typically worse for more highly rated firms and

somewhat better for low grade firms. 4

Huang and Zhou (2008) test a broad set of structural models by designing a GMM-based specifica-

tion test that confronts the models with panels of CDS term structures and equity volatilities. In

addition to ranking the models by rejection frequency, their paper provides insights into the specific

shortcomings of the models. One important weakness that emerges from their study is the models’

inability to fit the dynamics of CDS prices and equity volatilities. In particular, the models find

1See Jones Mason and Rosenfeld (1985) and Eom Helwege and Huang (2003).

2See Huang and Huang (2003)

3See Huang and Zhou (2008).

4Chen Collin-Dufresne and Goldstein (2009) argue that if one accounts for time variation in Sharpe ratios over

the business cycle, then spreads are more closely aligned with historical averages. Other papers have followed and

reinforced the point that macroeconomic conditions can help explain spread levels.
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it difficult to generate time variation in the equity volatility of the same magnitude as is actually

observed, suggesting that an extension to allow for stochastic asset volatility is desirable.

In addition to these two important findings, recent empirical work on default swap spreads provides

evidence suggestive of an important role for stochastic and priced asset volatility in credit risk

modelling. Zhang Zhou and Zhu (2005) perform an empirical study of the influence of volatility

and jumps on default swap prices. Although we abstract from jumps in this paper, their results

point to the importance of modelling time-varying volatility.5 Further evidence is provided in

Wang Zhou and Zhou (2010) who show that in addition to volatility being important for the price

of default protection, the variance risk premium is a key determinant of firm-level credit spreads.

Both these studies provide evidence indicating that a structural credit model with time-varying and

priced asset risk may be better poised to explain spreads than its constant volatility predecessors.

In addition to this recent work on credit markets, there is a significant body of literature docu-

menting time variation in equity volatilities. Given this evidence, financial leverage would have to

be the sole source of variation in stock return volatility in order for asset volatility to be constant,

as it is assumed to be in the majority of structural credit risk models. In fact, recent empirical

work by Choi and Richardsson (2009) clearly documents time variability in asset risk as well as a

degree of asymmetry at the asset level, which complements the leverage effect generated even in a

constant volatility model – equity volatility may increase when stock prices decline mechanically

because leverage increases as asset values drop or because asset volatility increases as asset values

drop, or both.

Overall, stochastic asset volatility would appear to be a compelling extension to a class of models

that has been around for more than thirty-five years. However, likely for technical reasons, it is

one that has not garnered much attention.6 We present, in closed form, solutions to debt and

equity prices in stochastic asset volatility model framework where default is triggered by a default

boundary, as in Black & Cox (1976), Longstaff & Schwartz (1995) and Collin-Dufresne Goldstein

(2001). In doing so, we are, to the best of our knowledge, the first to solve the first passage time

problem of stochastic volatility dynamics to a fixed boundary.

5The authors include both intra-day realized volatility and historical volatility as measures of short term and

long-term volatility, consistent with the notion that equity volatility varies both because of changes in leverage and

because of changes in asset volatility. Their results suggest that disentangling the two sources of variation is important

for explaining default swap prices.

6Huang (2005) describes the analytics of such a model, which in its simples form can be thought of as a Heston

(1993) model augmented with jumps. In contrast to our model, this framework does not allow for a default threshold

permitting default at any time; default occurs only at the maturity of the (zero-coupon) debt.
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We first consider the comparative statics of our benchmark model, which can be thought of as an

extension of the Black & Cox (1976) model. This permits us to study the channels through which

stochastic asset volatility influences bond yields. The three important determinants of spreads are

the volatility of volatility itself, the asymmetry of volatility, and the presence of a volatility risk

premium. That the volatility itself is made an idiosyncratic risk source, uncorrelated with the level

of a firm’s asset value, does impact credit spreads in a model with intermediate default. While it

does so in a modest way for longer-term credit spreads, it stands to make a significant impact on

spreads for up to ten years to maturity. The same is true for the correlation between shocks to

asset values and variances. A modest “leverage effect” at the unlevered firm value level leads to

higher spreads with a pattern similar to that of the volatility of asset risk: a non-trivial increase

in long-term spreads, but an important increase in relative spreads for maturities up to ten years.

Finally, the dominant effect stems from the market price of asset volatility risk, which can increase

spreads by an order of magnitude.

Of course, comparative statics are limited in that they do not reflect the constraints faced when

taking a model to the data. To address this, we rely on the Huang and Huang (2003) calibration

setting as a benchmark. This involves requiring the model to simultaneously fit four moment

conditions: the historical probability of default, recovery rates, equity risk premia and leverage.

We first confirm that, in the absence of stochastic asset risk, our model replicates the credit spread

puzzle - that is, it is unable to generate credit spreads in line with historical averages. However,

we find that for reasonable parameter values governing volatility dynamics and risk premia, our

model resolves or significantly mitigates the underestimation that forms the basis for the credit

spread puzzle. In other words, our framework is not subject to an inherent inability to explain

historical credit spread levels while matched to the moments used in HH, where the puzzle was first

documented.

One potential concern with this result is that several parameters remain free in our exercise.7

To address this, we conduct an analysis to identify which of the three channels have the ability

to significantly impact credit spreads. We find that the only means by which a stochastic asset

risk model can influence spreads, given the four chosen moments, is through the volatility risk

premium. The other two channels - volatility of asset risk and an asset level “leverage effect” -

are counteracted by the matching of empirical moments. Hence, it is the size of the volatility risk

premium parameter that determines how reasonable our spread estimates are. Since we do not

have rating-level data on the volatility risk parameters to use as inputs, we ask instead what level

of volatility risk-adjustment is necessary, within each rating group, to match not only the previous

four moments, but also the historical spread level. We express our risk adjustment as a ratio that

7Note that this issue is present also in the Huang and Huang (2003) study.
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can intuitively be thought of as analogous to the ratio between option-implied and historical equity

volatilities. We find that risk-adjusted 3-month volatilities need to be between 20% and 60% higher

than their physical measure counterparts to match credit spreads and the other four moments.

In addition, we find an interesting pattern across credit rating groups. Greater proportional risk

premia are necessary for higher grade firms. This is consistent with recent findings by Coval Jurek

and Stafford (2008) in structured credit markets. They find that although default risk is less

important in an absolute sense for senior CDO tranches, systematic risk is extremely important as

a proportion of total spreads for these tranches.

Like Huang and Huang (2003) , we find that the implied levels of asset volatilities are higher than

historical estimates in the literature and are, in fact, more in line with levered equity volatility

levels. To address this, we match our model to six moments: the four Huang and Huang moments,

the spread level and the equity volatility. We find that our model with priced systematic volatility

risk is able to match these moments quite easily. Although this model implies higher levels of lung

run means for the risk-adjusted variances, the quantitative impact on risk-adjustment for the 3

month horizon is limited.

Since the premia may be biased by the presence of non-default components, we carry out one final

calibration exercise. It has long been recognized that bond market illiquidity may be an important

determinant of spreads. Given the magnitude of the credit spread puzzle documented in previous

work, it is unlikely that illiquidity by itself would resolve the puzzle. However, it may well be the

case that placing some of the burden of explaining total spread levels on liquidity will generate more

accurate implied volatility risk premium levels. When using the level of a AAA short term spread

index as a proxy for the level of illiquidity compensation, we find that required risk-adjustments as

measured by the ratios of 3 month risk-adjusted to physical volatilities are reduced, in particular

for higher grade firms, to a maximum of about 40%.

We then refocus our analysis on the ability of our model to fit the time-series of default swap

spreads. We estimate our model firm by firm using GMM, relying on moment conditions matching

default swap spreads across five maturities and realized equity volatility. For our sample of 49

firms, we document risk-adjusted mean reversion, a correlation between asset value and volatility

shocks of -0.58, and asset risk volatility of 37% on average. The fit for CDS spreads is improved

significantly as compared the constant volatility model. In addition, the average pricing errors

are overall smaller than in four of the five models studied in Huang and Zhou (2008). While the

constant volatility model generates a spread underestimation of 65%, stochastic asset risk reduces

this to an underestimation of 10%. Absolute percentage pricing errors are smaller for 34 out of
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35 rating / model combinations which they study and are approximately halved in comparison.

The model with stochastic volatility could be rejected only for 3 firms out of 49 whereas for a

constrained constant volatility version, 48 out of 49 firms lead to a rejection of the model.

This paper is organized as follows: Section 2 describes the model and explains how we derive closed-

form solutions for a stochastic volatility credit risk model with fixed default boundary. Section 3

covers the comparative statics, while Section 4 discusses the various calibration exercises. Section

5 reports on our time-series specification tests, and finally Section 6 concludes.

2 The model

We model the firm’s unlevered asset value X as the primitive variable. Asset value dynamics can

be described by the following two SDEs

dXt

Xt
= (µ− δ)dt +

√
VtdW1, (1)

dVt = κ(θ − Vt)dt+ σ
√

VtdW2, (2)

where δ is the firm’s payout ratio and E(dW1dW2) = ρdt. Under the risk-neutral measure Q, Xt

follows
dXt

Xt
= (r − δ)dt +

√
VtdW

Q
1 , (3)

dVt = κ∗(θ∗ − Vt)dt+ σ
√

VtdW
Q
2 , (4)

with κ∗ = κ + λV and θ∗ = θκ/κ∗, where λV is the volatility risk premium.8 As asset variance Vt

follows Cox-Ingersoll-Ross (CIR) dynamics, the expected asset variance at t under the objective

probability measure is, conditional on an initial variance V0, given by

E(Vt) = V0e
−κt + θ

(
1− e−κt

)
. (5)

Under the risk-neutral probability measure, it can be written

EQ(Vt) = V0e
−κ∗t + θ∗

(
1− e−κ∗t

)
. (6)

In what follows, we provide the solutions for the firm’s equity value and equity volatility. To solve

for the firm’s equity value, we assume that the firm issues consol bonds.

8Note we later assume that the market price of volatility risk, λV V , is proportional to the volatility of asset

variance, λV = kσ, where k is a constant.

5



Then the equity value can be written as the difference between the levered firm value (F) and the

debt value (D), i.e., E(X) = F (X) −D(X). The firm’s levered asset value is given by

F (X) = X +
ηc

r
(1− pD)− αXDpD, (7)

where X, η, c, α, XD and pD denote the initial unlevered asset value, the tax rate, the coupon

rate, the liquidation cost, the default boundary and the present value of $1 at default respectively.

In equation (??), the first term is the unlevered asset value, the second term is the tax benefit and

the third term is the bankruptcy cost. The debt value is the present value of the coupon payments

before default and recovered firm value at default, which is given by

D(X) =
c

r
+

[
(1− α)XD − c

r

]
pD. (8)

Thus, the equity value is given by

E(X) = X − (1− η)c

r
+

[
(1− η)

c

r
−XD

]
pD. (9)

Applying Itô’s lemma, we obtain the stochastic process for the equity value as follows:

dEt

Et
= µE,t +

Xt

Et

∂Et

∂Xt

√
XtdW1t +

1

Et

∂Et

Vt
σ
√

VtdW2t, (10)

where µE,t is the instantaneous equity return. Given the specification in equation (??), we obtain

the model-implied equity volatility as

σE,t =

√√√√
[(

Xt

Et

∂Et

∂Xt

)2

+

(
σ

Et

∂Et

∂Vt

)
+ ρσ

Xt

E2
t

∂Et

Xt

∂Et

∂Vt

]
Vt. (11)

As is clear from equation (??), we can solve for the firm’s equity value once pD is found. Under

the risk-neutral measure Q,

pD = EQ[e−rτ ], (12)

with τ = inf{s > 0,Xs 6 XD}. To solve for pD, we need to compute the probability density

function of the stopping time τ under measure Q. We solve for the default probability by applying

Fortet’s lemma.

Recently, Longstaff and Schwartz (1995) introduce this approach into the finance literature to solve

for the default probability in a stochastic interest rate setting. Collin-Dufresne and Goldstein (2001)

extend Fortet’s equation to the case where the state variables (leverage ratio and interest rate) follow

a general two-dimensional Gaussian Markov process. In both the Longstaff and Schwartz (1995)

and Collin-Dufresne and Goldstein (2001), the state variables are assumed not only to be Markov,
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but also Gaussian. However this is not the case given our volatility dynamics. In order to apply

Fortet’s equation to our framework, we first have to solve for the joint probability density of the

asset value and asset variance. Next we briefly outline the steps involved.

First, define zt = ln (Xt/XD), a distance to default and p(zt, Vt, t|z0, V0, 0) the transition density

function conditional on log asset value being z0 and asset variance being V0 at the outset. Further,

denote H(zτ , Vτ , τ |z0, V0, 0) the probability density that the first passage time of the log asset value

to zD is τ and the asset variance takes value Vτ at τ . Since zt and Vt follow a two-dimensional

Markov process in the stochastic volatility model, applying the Fortet’s lemma, we obtain for

z0 > zD > zt,
9

p(zt, Vt, t|z0, V0, 0) =

∫ t

0
dτ

∫ ∞

0
dVτH(zτ = zD, Vτ , τ |z0, V0, 0)p(zt, Vt, t|zτ , Vτ , τ). (13)

The probability density H(zτ , Vτ , τ |z0, V0, 0) is implicit in equation (??), which we first discretize

and then use a recursive algorithm to solve for numerically. We discretize time T into nT equal

subperiods and define tj = j T
nT

= j△t with jǫ{1, 2, · · ·, nT }. Let the maximum and minimum

for the asset variance be V̄ and V , respectively. We discretize the variance V into nV equal

increments and denote Vi = V +i△V with iǫ{1, 2, · · ·, nV } and △V = V̄−V
nV

. Furthermore, we define

q(Vi, tj) = △t · △V · H(ztj=zD , Vtj = Vi, tj |z0, V0, 0). Note that H(ztj=zD , Vtj = Vi, tj |z0, V0, 0) is

the probability density that the default time is tj and asset variance is Vi at default. Then, the

discretized version of equation (??) is

p(ztj , Vi, tj |z0, V0, 0) =

j∑

m=1

nV∑

u=1

q(Vu, tm)p(ztj , Vi, tj |Vu, tm),∀iǫ{1, 2, · · ·, nV }. (14)

Given the joint transition density of zt and Vt, we obtain q(Vi, tj) recursively as follows:

q(Vi, t1) = △V p(zt1 , Vi, t1|z0, V0, 0),

q(Vi, tj) = △V

[
p(ztj , Vi, tj |z0, V0, 0) −

j−1∑

m=1

nV∑

u=1

q(Vu, tm)p(ztj , Vi, tj |Vu, tm)

]
,∀jǫ{2, 3, · · ·, nT }.

The probability that the default (first passage) time is less than T is given by

Q(z0, V0, T ) =

nT∑

j=1

nV∑

i=1

q(Vi, tj). (15)

Therefore, given the joint transition density function of zt and Vt, we can apply Fortet’s lemma to

solve for the default probability. In the next subsection, we detail the procedure to solve for the

9One main intuition behind the Fortets lemma is that given a continuous process, if it starts at z0 which is higher

than a fixed boundary (zD), it has to cross the boundary to reach a point below the boundary (zt).
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joint transition density of zt and Vt: first, by solving for the joint characteristic function and then

using inverse Fourier to back out the transition density.

Define Ψ(t) as the joint characteristic function of (zT , VT ) conditional on (zt, Vt) at t < T , i.e.,

Ψ(t) ≡ EQ
t

[
ei(ϕ1zT+ϕ2VT )|zt, Vt

]
= Ψ(ϕ1, ϕ2; zt, Vt, h), where h = T − t. Zhylyevskyy (2010) shows

that ∀σ > 0, the solution for Ψ(t) is given by

Ψ(ϕ1, ϕ2; zt, Vt, h) = ef1(h;ϕ1,ϕ2)+f2(h;ϕ1,ϕ2)Vt+iϕ1zt , (16)

where

f1 (h;ϕ1, ϕ2) = h

(
r − δ − κ∗θ∗ρ

σ

)
iϕ1 +

κ∗θ∗

σ2

[
hκ∗ + h

√
G+ 2ln

H + 1

Heh
√
G + 1

]
, (17a)

f2 (h;ϕ1, ϕ2) =
1

σ2

[
κ∗ − iρσϕ1 −

√
G
Heh

√
G − 1

Heh
√
G + 1

]
, (17b)

with

G(ϕ1) = σ2(1− ρ2)ϕ2
1 + (σ2 − 2ρσκ∗)iϕ1 + κ∗

2

,

H(ϕ1, ϕ2) = − iρσϕ1 − κ∗ −
√
G+ iσ2ϕ2

iρσϕ1 − κ∗ +
√
G+ iσ2ϕ2

.

Let a1, a2, b1 and b2 be “large” in absolute value. Further, define △1 = b1−a1
N1

, △2 = b2−a2
N2

,

ϕj1 = a1 + j1△1 and ϕj2 = a2 + j2△2, where j1 = 0, 1, · · ·, N1 and j2 = 0, 1, · · ·, N2. Zhylyevskyy

(2010) applies a kernel-smoothed bivariate fast Fourier transformation and obtains the conditional

joint density of (zT , VT ) as follows:

f(zT , VT ; zt, Vt, h) ∼=
1

4π2
△1△2W (△1zT ,△2VT )

N2∑

j2=0

N1∑

j1=0

e−i(zTϕj1
+VTϕj2

)Ψ(ϕj1 , ϕj2), (19)

where

W (△1zT ,△2VT ) =

∫ b2

a2

∫ b1

a1

e−i(△1zT x+△2VT y)K(x, y)dxdy,

and

K(x, y) =

{
(1−|x|)2(1−|y|)2

x2y2+x2(1−|y|)2+(1−|x|)2y2+(1−|x|)2(1−|y|)2 , if |x| ≤ 1 and |y| ≤ 1,

0 elsewhere.

3 Comparative Statics

Introducing stochastic volatility into a credit risk model adds three new potential channels for

asset risk to influence credit spreads. First, the very fact that volatility is random may impact

spreads directly. As we shall see, this is particularly true for short-term credit spreads. Second,
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volatility may be correlated with shocks to asset value. For example, there may be a “leverage

effect” or asymmetry at the unlevered volatility level - that is, the asset risk may increase as the

value decreases. This would work over and above the traditional financial leverage effect that is

already present in Merton (1974) and subsequent models. Third, volatility risk may be systematic

and carry a risk premium that is eventually reflected in credit spreads. In what follows, we address

each of these channels. First, we study them in a comparative statics setting. We acknowledge

up front the limitations of such an exercise, which does not require the model to match empirical

moments. However, it does help crystallize the economic intuition for the different effects. Later,

we reconsider the impact of stochastic volatility in a calibration experiment akin to that designed

by Huang and Huang (2003).

3.1 Stochastic volatility and the term structure of credit spreads

The most obvious potential channel through which our model can influence credit spreads relative

to existing models is the randomness in the volatility itself. Uncertainty about the volatility level

generates fatter tails in the asset value distribution, which, all else equal, increases the likelihood

of distressed scenarios and thus spreads. Figure 1 demonstrates this effect by retracing the yield

spread curves for different levels of the volatility of the asset variance, nesting the constant volatility

case, corresponding to the original Black and Cox (1976) model. Panel A plots the yield spread

curves in basis points, whereas Panel B plots the ratios of the spread curves relative to the constant

volatility case. Note that the effect can be quite significant but is more so for maturities less than

10 years. This is even more noticeable in the lower panel of the figure that reproduces the same

data in terms of ratios of spreads to the Black and Cox (1976) case. For maturities less than 7

years, it is quite straightforward for the model to more than double spreads. The relative effect

dissipates further out on the term structure and seems to reach stable levels after the 10-year tenor

- a spread increases in the range of 10% to 20% of the constant volatility spread.
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Figure 1. The impact of the volatility of volatility (σ) on the yield spread. This

figure shows the impact of the volatility of volatility on the yield spread when the market price

of volatility risk is zero. In Panel A, the Y-axis illustrates the absolute value of the yield spread,

which is calculated as the difference between the bond yield and risk-free rate. The solid curve

corresponds to the Black-Cox (1976) setting, where the asset volatility is a constant. In Panel B, the

values in the Y-axis are normalized by (or relative to) the corresponding values from the Black-Cox

case. The initial asset value X0 = 100, the default boundary XB = 35, the initial asset volatility is

21%, the yearly interest rate is 8% and the asset payout ratio is 6%. The other parameter values

for the stochastic volatility model are: κ = 4, ρ = −0.1, θ = 0.212.
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3.2 Asymmetric asset volatility and credit spreads

Since Black (1976) and Christie (1982), the question remains whether the observed negative corre-

lation between equity prices and equity volatilities is a purely financial effect. More recently, Choi

and Richardsson (2009) study firm-level returns and document a degree of negative correlation be-

tween asset values and asset volatilities. We now consider the comparative statics of the parameter

that governs this asymmetry in our setting, ρ the instantaneous correlation between shocks to asset

value and volatility.

Figure 2 visualizes the relationship between asset volatility asymmetry and spreads. The second

panel reports ratios of spreads for varying levels of ρ to the spread in the constant volatility level.

For this experiment, we make conservative assumptions regarding the volatility of asset risk, setting

σ = 0.3 and κ = 4. The case where ρ = 0 corresponds to a Black & Cox model extended to allow for

asset-risk dynamics independent of asset value dynamics. The resulting spreads are barely higher

than in the constant volatility case.

Setting the asymmetry parameter to ρ = −0.3, which implies positive shocks to asset risk on average

when asset values suffer negative shocks, has a limited effect on spreads, in the range of 2-10 basis

points. For short term spreads (less than five years), this amounts to a non-trivial relative increase -

spreads are approximately doubled. The absolute size of the increase is relatively stable so that for

longer tenors such as 15-20 years, the percentage stabilizes around 5%. Increasing the correlation

between asset volatility and value shocks to ρ = −0.6 provides a more significant boost in spreads.

With this level of correlation, 5-year spreads essentially triple as compared to the zero correlation

case. At 15 years, spreads increase by about a fifth of the no-asymmetry spreads.

The pattern for the relative spread increases is quite similar to the one reported for the volatility

of volatility parameter σ. It seems that the impact of asymmetry might be quantitatively slightly

more important than volatility risk itself, although not dramatically. However, given that in a

situation where a model is implemented empirically it is faced with matching several moments of

the data, this result is limited to a ceteris paribus setting. We will return below to whether this

holds in a calibration setting below. In addition, we will estimate the amount of asymmetry that

best describes firm specific time series of equity volatilities and default swap spreads.

11



0 5 10 15 20
0

20

40

60

Time to maturity

Y
ie

ld
 s

pr
ea

d 
(b

ps
)

A. Impact of Leverage Effect (ρ)

ρ=0
ρ=−0.3
ρ=−0.6
ρ=−0.9
Black−Cox

5 10 15 20
1

2

3

4

5

6

Time to maturity

R
el

at
iv

e 
yi

el
d 

sp
re

ad

B. Impact of Leverage Effect (ρ): Relative to Black−Cox Case

ρ=0
ρ=−0.3
ρ=−0.6
ρ=−0.9

Figure 2. The impact of the leverage effect (ρ) on the yield spread. This figure shows

the impact of the leverage effect on the yield spread when the market price of volatility risk is

zero. In Panel A, the Y-axis illustrates the absolute value of the yield spread, which is calculated

as the difference between the bond yield and risk-free rate. The solid curve corresponds to the

Black-Cox (1976) setting, where the asset volatility is a constant. In Panel B, the values in the

Y-axis are normalized by (or relative to) the corresponding values from the Black-Cox case. The

initial asset value X0 = 100, the default boundary XB = 35, the initial asset volatility is 21%, the

yearly interest rate is 8% and the asset payout ratio is 6%. The other parameter values for the

stochastic volatility model are: κ = 4, σ = 0.3, θ = 0.212.
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3.3 Asset risk premia

Finally, Figure 3 illustrates the impact of volatility risk premia on credit spreads without any

asymmetry effect (ρ = 0). As can be seen, the effect of the risk premium parameter k is first-

order. Spreads can be be increased dramatically by allowing for systematic asset volatility risk.

For example, when k = 3, spreads more than triple for some maturity segments.

In a relative sense, it is clear from the lower panel of Figure 3 that, like in the case of volatility risk

(σ) and asymmetry (ρ), the effect dominates the shorter part of the term structure, up to about 10

years. However, the sheer magnitude of the impact makes the effect significant for all maturities.

While short-term spreads can be inflated tenfold, long-term spreads can easily double, if not triple

Obviously, the difficulty at this stage will be to determine reasonable values for the unlevered

volatility risk premium. We address this below, and we will see that this third effect of stochastic

volatility on credit spreads is in fact the dominant one, and will survive the calibrations to empirical

moments.
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Figure 3. The impact of the market price of volatility risk (k) on the yield spread. This

figure shows the impact of the market price of volatility risk on the yield spread in the absence of

leverage effect (ρ = 0). In Panel A, the Y-axis illustrates the absolute value of the yield spread,

which is calculated as the difference between the bond yield and risk-free rate. The solid curve

corresponds to the Black-Cox (1976) setting, where the asset volatility is a constant. In Panel B, the

values in the Y-axis are normalized by (or relative to) the corresponding values from the Black-Cox

case. The initial asset value X0 = 100, the default boundary XB = 35, the initial asset volatility is

21%, the yearly interest rate is 8% and the asset payout ratio is 6%. The other parameter values

for the stochastic volatility model are: κ = 4, σ = 0.3, θ = 0.212.
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4 Stochastic Asset Volatility and the credit spread puzzle

We have now documented that in a comparative static setting, three channels exist that may have

an important effect on credit spreads: the volatility of asset risk itself, a “leverage” effect at the

unlevered firm level and risk premia associated with shocks to asset risk. All three effects have

the potential to help structural models achieve the levels of credit spreads necessary to address

what has recently become known as the credit spreads puzzle. Huang and Huang (2003) calibrate

a selection of different structural models to historical default rates, recovery rates, equity risk

premia and leverage ratios. They find that all models are consistently incapable of simultaneously

matching credit spreads while calibrated to these four moments. Their results are striking since

they compare models with quite different features: stochastic interest rates, time-varying leverage,

jump risk, counter-cyclical risk premia, endogenous default and strategic debt service. None of these

extensions of the basic Merton (1974) framework is able to more than marginally bring market and

model spreads closer to each other. This finding forms the basis for the credit spread puzzle.

We now ask whether the three channels through which stochastic asset volatility may influence

spreads in our model, can help reconcile model with market spreads on average. In order to do so,

we perform a calibration experiment closely following the methodology used in Huang and Huang

(2003). In other words, we require our model to match, for different rating categories, the following

observables

1. The historical default probability

2. The equity risk premium

3. The leverage ratio

4. The recovery rate

Table 1 reports on this exercise. We assume values for the additional parameters to be ρ = −0.1, σ =

0.3, κ = 4, and k = 7. The asymmetry is chosen to be modest as reported by Choi and Richardssson

(2009). By means of comparison, in equity markets, Heston (1993) uses ρ = −0.5, while Broadie

Chernov and Johannes (2009) use ρ = −0.52 and Eraker Johannes and Polson (2003) find values

for ρ between -0.4 and -0.5. Pan (2002) uses a value for λV = kσ equal to 7.6, while Bates (2006)

uses a λV equal to 4.7. Our choice of k implies a volatility risk premium λV = 2.1. Bates (2006)

documents estimates of κ in the range of 2.8 and 5.9 for a selection of models, whereas Pan (2002)

estimates values ranging between 5.3 and 7.
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For the Aaa category we are able to explain about 96% of average historical spread levels. For Aa

to Baa we explain between 73% and 82% while for the two lowest we actually overestimate spreads

by 13% and 24% respectively. This compares to 16% for Aaa, 29% for Baa and a maximum of

83% for B rated firms in Huang and Huang (2003). It is clear from this table that for this set

of parameters, we can address the spread underestimation for high and low rating categories and

reduce it significantly for the intermediate ones.10 The exact numbers are sensitive to whether

we consider 4 or 10 year spreads and we see that the hardest spreads to fit are high grade and

short term. Nonetheless, the overall impression remains. Our framework, for reasonable and

conservative inputs, does not suffer from the same systematic underestimation problem that all the

models studied in Huang and Huang (2003) are subject to.

Unfortunately, we do not have rating-specific estimates of the new parameters related to our stochas-

tic volatility model. We cannot claim that our model is able to match historical spreads given his-

torical moment restrictions, only that it has little difficulty in reaching the required spread levels.

To highlight the marginal importance of stochastic volatility in our model, the top panel in Table

2 repeats the calibration exercise in Table 1 with all parameters related to time-varying volatility

set to zero (σ = ρ = κ = k = 0). The model thus recovered, corresponding to Black and Cox

(1976), behaves very similarly to those studied in Huang and Huang (2003). For high grade bonds,

the model cannot explain any significant part of the spread and reaches a maximum of 68% for the

lowest grade bonds. This clearly highlights that various aspects of time-varying volatility are at

the heart of the improved performance of our model in relation to historical spreads. This stands

in sharp contrast to the previous literature.

However, the lack of granularity of our volatility parameter estimates remains. To address this, we

carry out a “comparative statics” analysis of the calibration in Table 1. The intent is to understand

the relative contribution of each of the three parameters to the improved spread fitting ability of

the model. As noted above, panel A in Table 2 defines the benchmark, by shutting down stochastic

asset volatility altogether. This benchmark corresponds to the credit spread puzzle as presented in

Huang and Huang (2003). Panel B opens up for stochastic volatility by setting σ = 0.3 but without

any asymmetry (or “leverage” effect at the asset level) or risk premium for asset volatility risk. In

this case, the predicted spreads remain very similar to the constant volatility case and the credit

spread puzzle remains.

Thus uncorrelated and fully idiosyncratic asset risk is not the channel that allows our model to

generate sufficient yield spreads. This may seem counterintuitive given that the comparative statics

10Note that there is always some value for the variance risk premium that will fit the spread exactly. We return to

that exercise below.
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discussed above and depicted in Figure 2 appear to permit stochastic asset risk significant leeway

in influencing credit spreads. The reason for this perhaps surprising result can be traced back to

the design of the calibration experiment: the four moment conditions (default losses and rates,

leverage and equity risk premia) work to cancel out the effect of more pronounced tails in the asset

value distribution. For a given level of volatility risk, the increased spread that would result in a

ceteris paribus exercise is mitigated by the requirement to fit the moments in the calibration. In

particular, the model will tend to produce lower asset volatility levels for the high grade scenarios

where the underestimation of spreads is the most severe.

Panel C of Figure 2, adds a modest amount of asymmetry to the scenario summarized in panel B.

Again, the effect, which was significant in the comparative statics above (see Figure 1), is cancelled

out by the requirements to fit the moments in the calibration. Thus a leverage effect at the asset

value level with fully idiosyncratic asset risk does not help explain the puzzle documented in Huang

and Huang (2003). Finally, Panel D of Figure 2 adds a risk premium to asset volatility. This effect

is not constrained by the four moments used in the calibration. The spread explanation percent-

ages increase significantly to between 75% and 128%, which, while not fitting spreads within each

rating category accurately, does remove any systematic underestimation of spreads. In summary,

it appears that the market price of asset volatility risk is one channel through which a structural

credit risk model’s ability to explain market spreads can be significantly improved.

So far, we have based our analysis very closely on the HH calibration as it forms the basis for the

credit spread puzzle. However, although we have established that our framework is not subject

to the limitation of generating insufficient spreads, we still face the problem of risk premium esti-

mation. Although, at this stage, a full-fledged firm level estimation of risk premia is beyond our

paper’s scope, we will attempt to better understand the required volatility risk premia. In a first

step, we simply ask what levels of asset volatility risk premia would be necessary to explain market

spreads in the HH calibration.

Table 3 reports our results for an exercise where we augment the moment conditions used in HH by

a requirement to also fit historical spreads (in addition to default losses, probabilities, equity risk

premia and leverage ratios).11 Rather than report the parameter k directly, which has no obvious

intuitive empirical counterpart, we report λV as well as the square root of the ratio of the three

month expected risk-adjusted and historical volatilities respectively. This ratio, EQ(Vt)
E(Vt)

, is intended

11It is important to note that the two types of risk premia present in this calibration are not distinct. The level of

the asset volatility premium impacts the asset return risk premium which is matched to historical equity risk premia.

Thus, we are not merely adding a free parameter which trivially fits the new moment condition. All five moment

conditions are satisfied simultaneously.
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to provide a quantity similar in spirit to observable ratios of option-implied and historical equity

volatilities.

We find that 3 month risk adjusted volatilities need to be need to be between 22% and 53% higher

that their historical counterparts, in order to fit historical credit spread data for ten year bonds

across the rating categories. This wedge for 4 years bonds lies between 7% and 54%. The risk

premium parameter λV ranges from -1.23 to -2.55 for the ten year spreads and between 0.45 and

-2.55 for 4 year bonds. We are not aware of any empirical estimates of this quantity for individual

firms. As mentionned above, for equity indices, λV has been found to be greater in absolute terms (-

7.6 in Pan (2002) and -4.7 in Bates (2006)). Given that our estimates are for an unlevered volatility,

risk premia should be lower in absolute terms. In addition, it has been shown that measures of

implied volatilities tend to be lower relative to historical volatility for individual stocks (see e.g.

Carr (2008)).

Another interesting finding that emerges from Table 3 is the pattern of the risk premia across

ratings. The required risk premium is higher for the higher grade firms than for speculative grade

firms. The ratio of risk-adjusted to historical volatilities is in fact monotonically increasing in credit

quality. This implies that higher grade firms are relatively more sensitive to systematic shocks to

volatility. A similar point has been made recently for the structured credit markets. Coval Jurek

and Stafford (2009) show that prices in long dated index options markets imply proportionally much

higher risk premium components in senior than junior CDO tranches. For single-name securities

grouped into credit rating categories, Huang and Huang (2003) document that it is harder to explain

higher grade spreads with constant volatility structural models. Berndt et al (2008) and Elkamhi

and Ericsson (2008) show that ratios of risk-adjusted to historical default probabilities are indeed

increasing in credit quality. In sum, these are consistent with the average economic state in which

a highly rated fixed income instrument defaults being worse than the average economic state in

which a lower rated security defaults. Along the same line of reasoning, the higher the systematic

risk of a firm, the greater the ratio of its risk-adjusted volatility over its historical volatility.

We note that the model fits spreads with limited impact on the most significant free parameter in

the calibration we (like Huang and Huang (2003)) use - the asset volatility level. In panel A of

Table 2, which corresponds to our version of the HH calibration with constant asset risk, implied

asset volatilities range between 25% and 35%. This is comparable to the numbers reported in the

base case by HH which range between 25% and 40%. It should be noted that these estimates are

in fact quite high. Indeed, they are comparable to the estimates of equity volatilities across rating

categories reported by Schaefer and Strebulaev (2008) which range from 25% for AAA firms to

42% (61%) for BB (B) firms respectively. In contrast, Schaefer and Strebulaev (2008) report asset
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volatilites averaging 22% for most rating categories and increasing to 28% for B firms. In other

words, when confronted with the four moment conditions used so far, the model remains unable to

produce reasonable asset and equity volatilities.

To address this problem, we modify the calibration by requiring that our model also fit historical

equity volatilities, leaving the model with a total of six moments to match. Table 4 provides evidence

from this modified calibration exercise. Our stochastic volatility model now simultaneously fits

1. default probabilities,

2. recovery rates,

3. leverage ratios,

4. equity risk premia,

5. equity volatilities,

6. and credit spreads.

The model is able to fit the four HH moments in addition to the historical equity volatilities and

spreads, while retaining the values previously assumed for ρ and σ, while letting k and κ float.

Again, instead of reporting the implied k values, we present the ratio of expected three month

volatilities under the risk-adjusted and historical probability measures respectively.

The calibration produces quite reasonable implied asset volatility levels ranging from 21% for

rating categories Aaa to Baa and 25% for Ba and 37% for B. These figures are much closer to those

reported by Schaefer and Strebulaev although a little higher for B firms. Thus it appears that our

model does not need to systematically suggest unrealistically high levels of asset volatility to fit the

required moments, in contrast to the constant volatility models studied in HH. Furthermore, the

link between ratings and risk-adjustment noted above survives. Ratios of expected volatilities and

the risk premium parameter λV decrease as credit quality deteriorates. The levels remain similar.

We have thus shown that a stochastic volatility model with priced volatility risk is able to match

all the moments in Huang and Huang (2003) in addition to credit spreads and historical equity

volatilities for some level of θ∗

θ
, the ratio of long term volatilities under the risk-adjusted and

historical probability measures. However, we have so far placed the full burden of explaining spreads

beyond a simple structural model on the presence of a variance risk premium. But corporate bond

spreads may contain compensation for other risks not captured by our model. A strong candidate
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missing factor is the illiquidity of corporate bond markets. If illiquidity is an important determinant

of bond spreads then our estimates of required volatility risk adjustments may be excessive. To

understand how important such an effect might be, we follow Almeida and Phillippon (2007) in

their liquidity correction of the Huang and Huang (2003) rating based scenario. We assume that

the AAA rated one year yield spread contains negligible compensation for default risk and can be

thought of mainly as compensating for illiquidity relative to a one-year government bond. We then

substract this yield spread from our previous spreads to obtain rough estimates of default risk only

spreads. Clearly this approach is simplistic as the liquidity spread may well depend on the credit

rating (see. e.g. Ericsson and Renault (2006) and Xiong and He (2010)). However, the objective

here is merely to gauge the quantitative impact on required variance risk premia of a reasonable

level of liquidity adjustment, not a precise estimation of risk premia per rating category.

Table 5 reports our findings. There is a negligible impact on the implied asset volatilities. The

significant, and expected, effect is to reduce the required variance risk premia. For 10 year bonds,

the required ratio of expected variances now ranges from 1.22 to 1.39 (compared to the previous

range of 1.23 to 1.56), while the range of lambda is -1.21 to -1.76 (compared to -1.26 to -2.34).

The effect is strongest for higher rated bonds, which is intuitive since it is those spreads that are

adjusted the most in a relative sense.

Table 6 summarizes the variance risk premium adjustments across ratings, calibration scenarios

and risk adjustment metrics. The table reports on the ratio of long term means (θ
∗

θ
), ratios of risk-

adjusted to historical expected variances with 1 and 3 month horizons, as well as the risk premium

parameter λV directly. One clear pattern is that the risk-adjustment (as a ratio) depends critically

on the horizon of the metric. The ratio θ∗

θ
has a perpetual horizon as it measures the wedge

between the long run mean levels for the variance dynamics under the risk-adjusted and historical

probability measures respectively. It tends to be higher than the ratio of expected variances at 3

months, which in turn is higher than that for a one month horizon.

Han and Zhou (2010) find ratios of risk-adjusted variances (measured as one month model-free

option implied variances)in a large panel of individual firms to be on average 38% higher than their

physical counterparts. This is higher than our typical risk adjustment which at the one month

horizon lies between 10% and 20% for 10 year bonds (6% to 15% for 4 year bonds with the liquidity

correction). On the other hand estimates of variance risk premia in Carr and Wu (2008), which

are estimated using variance swap returns, come in lower at about 4% on average. Although the

variance risk premia our model requires to explain the cross-section of historical credit spreads do

not appear unreasonable, we leave further empirical work in this direction to future work.
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All ratios decrease as credit quality deteriorates, as does λV , reflecting, as discussed above, that

risk premia are proportionally more important to explain credit spreads for higher grade firms.

Requiring the model to fit equity volatility has a positive effect on the required ratio θ∗

θ
for higher

rated firms, while it has little effect on the other metrics.

5 Specification tests - constant vs. Stochastic asset volatility

5.1 Data

The CDS spread is the premium paid to insure the loss of value on the underlying realized at

pre-defined credit events. This contrasts with the yield spread of a corporate bond, which reflects

not only default risk but also the risk-free benchmark yield, the differential tax treatment and

liquidity of corporate bonds vs. Treasury bonds. Further, while bonds age over time, CDS spreads

are quoted daily for a fixed maturity. In addition, CDS contracts trade on standardized terms and

while CDS and bond spreads are quite in line with each other in the long run, in the short run

CDS spreads tend to respond more quickly to changes in credit conditions. For all these reasons, it

is plausible that the CDS spread is a cleaner and more timely measure of the default risk of a firm

than bond spreads. As a result, they may be better suited for specification tests of a structural

credit risk model.

We collect single-name CDS spreads from a comprehensive database compiled by Markit. Daily

CDS spreads reflect the average quotes contributed by major market participants. This database

has already been cleaned to remove outliers and stale quotes. We require that two or more banks

should have contributed spread quotes in order to include an observation (Cao, Yu, and Zhong,

2010). The data sample that is available to us include only the firms that constituted the CDX

index from January 2002 to March 2008.

Our sample includes US dollar-denominated five-year CDS contracts written on senior unsecured

debt of US firms. While CDS contracts range between six months and thirty years to maturity, we

use the 1, 3, 5,7 and 10 years only because that are relatively more liquid than other maturities (6

months, 2 years, 20 years)

The range of restructurings that qualify as credit events vary across CDS contracts from no restruc-

turing (XR) to unrestricted restructuring (CR). Modified restructuring (MR) contracts that limit

the range of maturities of deliverable instruments in the case of a credit event are the most popular

contracts in the United States. We therefore include only US dollar-denominated contracts on
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senior unsecured obligations with modified restructuring (MR), which also happen to be the most

liquid CDS contracts in the US market (Duarte, Young, and Yu, 2007).

Together with the pricing information, the dataset also reports average recovery rates used by

data contributors in pricing each CDS contract. In addition, an average rating of Moody’s and

S&P ratings as well as recovery rates are also included. Following Huang and Zhou (2008) we

perform our test on monthly data. Their sample is restricted to 36 monthly intervals because their

sample ends in 2004. Instead, we require that the CDS time series has at least 62 consecutive

monthly observations to be included in the final sample. Another filter is that CDS data have

to match equity price (CRSP), equity volatility computed from (TAQ) and accounting variables

(COMPUSTAT). We also exclude financial and utility sectors, following previous empirical studies

on structural models. After applying these filters, we are left with 49 entities in our study.

In testing structural models, the asset return volatility is unobserved and is usually backed out from

the observed equity return volatility. Traditionally, researchers use a rolling window of daily returns

volatility to proxy for equity volatility. In order to benchmark our results to the specification tests

of alternative models covered in Huang and Zhou (2008) we use a more accurate measure of equity

volatility from high-frequency data. Following Huang and Zhou( 2008) we use bi-power variation

to compute volatility. As shown by Barndorff-Nielsen and Shephard (2003), such an estimator

of realized equity volatility is robust to the presence of rare and large jumps. The data on high

frequency prices are provided by the NYSE TAQ (Trade and Quote) data base, which includes intra-

day (tick-by-tick) transaction data for all securities listed on NYSE, AMEX, and NASDAQ. The

monthly realized variance is the sum of daily realized variances, constructed from the squares of log

intra-day 5-minute returns. Then, monthly realized volatility is the square-root of the annualized

monthly realized variance.

5.2 GMM Estimation of the Model

Let cds(t, t+T ) and cdsobs(t, t+T ) denote the model-implied and empirically observed CDS spreads

of a CDS contract at time t for which the maturity date is t+T respectively. Let σE,t and σobs
E,t denote

the model-implied and empirically observed equity volatilities at time t respectively. Following the

literature, the solution for the model-implied CDS spread is given by

cds(t, t+ T ) =
(1−R)

∑4T
i=1B(t, t+ Ti) [Q(t, t+ Ti)−Q(t, t+ Ti−1)]∑4T
i=1B(t, t+ Ti) [1−Q(t, t+ Ti)] /4

, (20)

where R is the recovery, B(t, t + Ti) is the default-free discount function and Q(t, t + Ti) is the

risk-neutral default probability. As shown in the model section, the model-implied equity volatility
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is given by

σE,t =

√√√√
[(
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Et

∂Et
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)2

+
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Et

∂Et

∂Vt

)
+ ρσ

Xt

E2
t

∂Et

Xt

∂Et

∂Vt

]
Vt. (21)

We define ft(Θ) as the overidentifying restrictions, which is given by

ft(Θ) =




cds(t, t+ T1)− cdsobs(t, t+ T1)

· · · · ··
cds(t, t+ Tj)− cdsobs(t, t+ Tj)

σE,t − σobs
E,t



, (22)

where Θ = (ρ,XD, κ, θ, σ) is the parameter vector to be estimated. 12 The term structure of

CDS spread includes five maturities:1, 2, 3, 5, 7 and 10 years. Thus we apply the seven moment

conditions (from six CDS spreads and equity volatility) to estimate five parameter values in the

GMM test. Given that the model is correctly specified, we obtain that E [ft(Θ)] = 0. We define

the sample mean of the moment conditions as gT̄ (Θ) = 1/T̄
∑T̄

t=1 ft(Θ), where T̄ is the number of

time series observations. Following Hansen (1982), the GMM estimator is given by

Θ̂ = argmin gT̄ (Θ)′W (T̄ )gT̄ (Θ), (23)

where W (T̄ ) is the asymptotic covariance matrix of gT̄ (Θ).13 With some regularity conditions, the

GMM estimator Θ̂ is
√
T consistent and asymptotically normally distributed given that the model

is correctly specified (null hypothesis). The J-statistics is given by

J = T̄ gT̄ (Θ̂)′W (T̄ )gT̄ (Θ̂). (24)

The J-statistics is asymptotically distributed as a Chi-square with the degree of freedom being

equal to the difference between the number of moment conditions and the length of Θ, which is

equal to one in our setup.

We estimate our model in two steps. First, we set the initial asset volatility (
√
Vt) at each obser-

vation date t to be (1 − leveraget)σ
obs
E,t and then obtain one GMM estimator (Θ̂) for Θ. In the

second step, we obtain the updated asset volatility (

√
V update
t ) at each observation date t such that

the model implied equity volatility to be equal to the observed one, i.e., σmodel
E (V update

t , Θ̂) = σobs
E,t.

Then use V update
t to obtain the updated GMM estimator (Θ̂update) for Θ.

12There are two latent variables in the estimation: asset value and asset variance at each observation date. Following

Huang and Zhou (2008), we back out the asset value from the observed leverage ratio, which is defined as the ratio

of face value over the asset value. We estimate the initial asset variance in the two steps to be discussed later in this

section.

13Following Newey and West (1987), we use a heteroskedasticity robust estimator for W (T̄ ).
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5.3 Results

Table 8 reports summary statistics for the 49 firms (4116 default swap quotes in total) in our sample

which spans the period 2002-2008 and contains firms that are also part of the sample in the Huang

and Zhou (2008) study we rely on as a benchmark. This choice of data is intentional to permit

a better comparison - so that any differences in our results are more likely to indicate differences

across models rather than data sample.

Rating-based averages for equity volatilities range from 22% to 41% and leverage ratios from 26%

to 77%. Asset payout rates are also quite similar to those in Huang and Zhou (2008) typically just

above 2%. CDS spreads are similar as well. Panel C in Table 8 reports on the standard deviations

of CDS spreads.

Table 9 contains the parameter estimates resulting from the GMM implementation. We note first

that the degree of volatility asymmetry - that is, the correlation between shocks to asset values

and asset variances (ρ) is similar across firms and ratings and averages -0.58. This is similar to

values reported in the literature on equity volatilities (see Eraker Johannes and Polson (2003) and

the discussion in section 4 above). This is higher than the value we assumed in the comparative

statics above (-0.1) and provides evidence of a “leverage” effect at the asset value level. In other

words, the asymmetry observed in equity markets stems both from mechanical changes in financial

leverage as stock prices fluctuate and the negative correlation between the levels of asset values and

volatility. Table 12 converts the asset value asymmetry into an equity leverage effect (Appendix

C provides the necessary derivations). We find that for most rating categories, the instantaneous

correliton between asset value and variance shocks is lower than for equity and equity variance

shocks. However, the magnitude of this difference is small. This suggests that financial leverage

only plays a minor role in the asymmetry observed at the equity return level.

The estimated speed of mean reversion under the risk-adjusted probability measure (κ∗) ranges

from 0.5 and 1.2 averaged within rating categories, lower than the levels we used in the compar-

ative statics. Given that higher mean reversion speeds will tend to reduce variance volatility, our

assumptions in the comparative statics, like those make for the correlation parameter, also appear

conservative. The asset variance volatility parameter (σ), is estimated to values in the range of 24%

to 45%, averaging 37%, somewhat higher than our choice of parameter value in the comparative

statics (30%).

We find that the default boundary is estimated to between 62% and 75% of the book value of

debt. This entails that a BBB firm, whose default boundary is 67% of debt, would default at an
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asset value level of about 32% of its current non-distressed value. This is broadly consistent with

estimates in Davydenko (2007) and Warner (1977). Firms often operate at significantly negative

net worth levels before defaulting, reflecting the valuable optionality of equity when faced with

financial distress. Note that the ratio of the default point to liabilities is smaller (greater) for the

lower (higher) grade firms - a B (AA) firm defaults at 75% (62%) of book debt where leverage is

around 77% (26%). Thus they would default at an asset value level 42% (84%) lower than current

value.

Long run risk-adjusted variance levels are estimated to lie between 3% and 9%, corresponding to

volatility levels of 17% and 30% respectively.

The reported mean J-stats in Table 9 are well below the critical values at conventional significance

levels. This stands in stark contrast with the findings in Huang and Zhou (2008) who find that

almost all the models they study: the Merton (1974), Black and Cox (1976), and Longstaff and

Schwartz (1995) are consistently rejected whereas the Collin-Dufresne and Goldstein (2001) model

is rejected in half of the cases. The last two columns of Table 9 report on the number of firms for

which our model can be rejected. At the 1% (5%) level only 1 (3) firm out of 49 leads to a rejection

of the model.

To provide a more specific benchmark by which to judge these results, Table 10 reports on the

same exercise with the stochastic asset volatility channel turned off. These results are similar to

the findings of Huang and Zhou (2008) for the same model. Here, the Black and Cox (1976) model

can be rejected for 45 out of the 49 firms (compared to at best 87 out of 93, in HZ). Clearly, the

addition of stochastic volatility renders the rejection of the model significantly harder. Note that

the number of free parameters is greater when we introduce stochastic asset risk, and that this will

make a rejection harder. A fairer comparison in this regard is the Collin-Dufresne Goldstein (2001)

model (CDG) evaluated in Huang and Zhou (2008), which has the same number of additional

parameters with respect to the Black and Cox (1976) model. In that case between and 67% and

75% of the firms lead to non rejections, compared to between 94% and 98% in Table 9. The CDG

model yields somewhat lower pricing errors on the defaults swaps but, not surprisingly, faces more

resistance in fitting the time series of equity volatilities.

The pricing errors are reported in Panels B and C of Table 9. The first finding is that spreads are

underestimated by between 3 (A rated firms) and 61 (B rated firms) basis points with an average of

18. The direction of the bias is reminiscent of the findings across 29 of 35 rating model combinations

in Huang and Zhou (2009). However, the level is significantly lower than for the Merton, Black

and Cox, Longstaff and Schwartz models as reported by HZ. For the Collin-Dufresne Goldstein
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model, we have already noted a slightly better performance. For the BB (B) rating categories we

underestimate spreads by 43 (171) basis points while Huang and Zhou find -143 (-518) basis points

respectively. Moreover the dispersion of the errors is smaller. Huang and Zhou report absolute

pricing errors in the range 13 to 1381 basis points across ratings (averaging 101 basis points) for

the Black and Cox model. In contrast, we find a range between 7 and 96 basis points with average

of 26 basis points.

A better understanding of the findings can be had by comparing to the Black & Cox (1976)

model estimated on our sample (by shutting down stochastic asset risk). Our overall average

underestimation with stochastic volatility is by 18 basis points (or 10 percent of the average total

spread) as compared to 48 basis points (or 65% of the average total spread) with constant volatility.

The average absolute pricing error is 26 basis points with stochastic volatility and 50 basis points

without. Not surprisingly, the model with stochastic asset volatility does a much better job at fitting

the time series of equity volatilities, generating average pricing errors (absolute pricing errors) of

15 (35) basis points as compared to -396 (1085) basis points.

Figure 4 summarizes average model implied and market spreads for the sample by rating groupings.

In comparison to Huang and Zhou (2009), these figures provide a much more encouraging summary

of the model’s performance. Note also that one of the conclusions in Huang and Zhou is that their

model finds it hard to fit both CDS and equity volatility time series. Our model, of course, matches

equity volatilities by construction, but it appears that in doing so, it is also better able to fit the

price of default insurance.
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Figure 4. Observed and model-implied 5-year CDS spreads. This figure shows the time

series of observed 5-year CDS spreads and those estimated from the stochastic volatility model and

the Black-Cox (1976) model. One unit in the Y axis corresponds to 100 basis points.
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Figure 5. Observed and model-implied equity volatility. This figure shows the time series

of the realized volatility, which is estimated from 5-minute intraday stock returns, and the model-

implied equity volatility from the stochastic volatility model and the Black-Cox (1976) model.

6 Concluding remarks

We have developed and studied a first-passage time structural credit risk model with stochastic

volatility as a means of addressing the credit spread puzzle documented in Huang and Huang

(2003) and further studied in Collin Dufresne Goldstein (2009). We find that, in a comparative

static setting, such a model has various ways of generating higher credit spreads than constant

volatility models, but in a calibration setting, the key driver of spreads ends up being the volatility

risk premium.
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Having found that our model is able to generate sufficiently high credit spreads to not be subject

to the credit spread puzzle, we consider the levels and patterns of volatility risk premia that are

necessary to resolve the puzzle. The levels are quite plausible and the pattern is interesting. For

high grade firms, the risk-adjustment needs to be proportionally higher than for lower grade firms.

An Aaa firm will likely encounter financial difficulties only subsequent to a massive systematic

shock to volatility echoing the findings of Coval Jurek and Stafford (2008). In the context of

default swaps and corporate bonds respectively, Berndt et al (2008) and Elkamhi and Ericsson

(2008) show that the risk adjustment ratios are indeed increasing in credit quality. Their results

indicate that the average economic state in which a highly rated bond defaults is worse than the

average economic state in which a lower rated security is likely to default. Similarly, the higher

the systematic risk a firm has, the greater the ratio of its risk-adjusted volatility over its objective

volatility. This translates to a downward sloping curve which links the risk adjustment ratio to the

credit quality.

We extend the calibration method of Huang and Huang (2003) and find that our model, is able

to fit their four moments as well as both spread levels and historical equity volatility levels quite

easily, something earlier models have been incapable of.

Having thus evaluated the cross sectional properties of spreads implied by our model, we proceed

to also study the ability of our model to explain jointly dynamics of credit spreads and equity

volatilities, a task which has been shown to be out of the reach of constant volatility structural

credit risk models. By construction, our model fits equity volatilities well while the fit for CDS

prices is much improved relative to the findings for constant volatility models studied in Huang and

Zhou (2009). In addition, this exercise provides interesting empirical evidence on the dynamics of

firms’ unlevered assets. We find evidence of a significant non-financial leverage effect - asset value

and variances shocks are significantly negatively correlated.

The technical contribution of our paper, closed form analytics for a first passage time stochastic

volatility model has many obvious applications in the credit risk literature. More generally, we

believe there are numerous applications in the real options literature, where investment and volatily

are closely related.
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Appendix A: details on the calibration procedure

We calibrate the model in three different ways. In the first one, we calibrate the initial asset value,

long-run mean of asset volatility and asset risk premium to match the target leverage ratio, equity

premium and cumulative default probability. In the second one, we calibrate the initial asset value,

long-run mean of asset volatility, market price of volatility risk and asset risk premium to match

the target leverage ratio, equity premium, cumulative default probability and historical average

yield spread. In the third one, we calibrate the initial asset value, long-run mean of asset volatility,

market price of volatility risk, asset risk premium and mean-reversion parameter to match the target

leverage ratio, equity premium, cumulative default probability, historical average yield spread and

equity volatility. For all the three calibration, we assume that the firm recovers 51.31% of the face

value given default.

To calibrate our model, we need to specify the asset premium and the leverage ratio. The asset

premium is given by

πX = (1− L)πE + LπD, (25)

where πE is the equity premium, πD is the bond risk premium and L is the firm’s leverage ratio.

We use the yield spread of the corporate bond over a comparable default-free bond as a proxy for

the bond risk premium. The leverage ratio is given by

L = P/X, (26)

where P is the face value and X is the unlevered asset value.

Also to calibrate the model to the term structure of yield spreads, we need to price a corporate bond

with finite maturity. For a corporate bond with maturity T and semi-annual coupon payment, the

bond price is given by

D0,T =
c

2

2T−1∑

i=1

[1− ωQ(0, Ti)] /(1 + r)Ti +
(
P +

c

2

)
[1− ωQ(0, T )] /(1 + r)T , (27)

where P is the face value of the bond, c is the annual coupon payment, Ti is the ith coupon date,

ω is loss rate given default, and Q(0, Ti) is the risk-neutral default probability before time Ti. We

assume that the corporate bond is priced at par. Thus we can back out the annual coupon payment

from equation (??). Also the bond yield is the same as the coupon rate.

Finally, when we perform the second and third calibrations as mentioned earlier, we use equation

(??) to calibrate the model to the historical average equity volatility for different credit ratings.
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Appendix B: a Solution for the Default Probability: One Special

Case

We denote S(z, V, h) as the risk-neutral probability that the log asset value z has never crossed the

default boundary zD = 0 before T = t+ h, given that zt = z and Vt = V . Obviously, the default

probability Q(z, V, h) = 1 − S(z, V, h). Below we show the procedure to obtain the closed-form

solution for S when S satisfies the smooth pasting condition at z = 0.

Define the default time as τt = inf{s ≥ t, zs ≤ zD}. Then P (τt < T |zt = z, Vt = V ) = 1−S(z, V, h).

Since we can rewrite S(z, V, h) as a conditional expectation, it follows a martingale and satisfies

the following backward Kolmogorov equation.

Sh =
1

2
V Szz + ρσV SzV +

1

2
σ2V SV V + (r − 1

2
V )Sz + κ∗ (θ∗ − V )SV , (28)

with the initial condition S(z, V, 0) = 1 and the boundary condition S(0, V, h) = 0. Define

S̃(ω, V, h) =
∫∞
0 e−ωzS(z, V, h)dz with the real part of ω being positive. Given the solution for

S̃, we obtain that S(z, V, h) = 1
2πi

∫ C+i∞
C−i∞ ezωS̃(ω, V, h)dω with C being a positive constant. To

solve for S̃(ω, V, h), we use the following equations:

S̃(ω, V, 0) =

∫ ∞

0
e−ωzdz =

1

ω
, (29a)

∫ ∞

0
e−ωz ∂S

∂z
dz = ωS̃, (29b)

∫ ∞

0
e−ωz ∂2S

∂z∂V
dz = ω

∂S̃

∂V
, (29c)

∫ ∞

0
e−ωz ∂

2S

∂z2
dz = ω2S̃. (29d)

When getting equation (??), we assume that the “smooth pasting” (we need to find the correct

wording or the economic intuition here since it is the same as in Leland (1994)) condition is

satisfied by S at z = 0, i.e., ∂S
∂z

|z=0 = 0. Applying the transform
∫∞
0 e−ωz · dz on both sides of

equation (??) and plugging equations (??)-(??), we obtain that

∂S̃

∂h
=

1

2
σ2V

∂2S̃

∂V 2
+ [κ∗θ∗ + (ρσω − θ∗)V ]

∂S̃

∂V
+

[
ωr +

(
1

2
ω2 − 1

2
ω

)
V

]
S̃. (30)

Guessing that the solution for S̃ is S̃(ω, V, h) = 1
ω
e−A(ω,h)−B(ω,h)V , we obtain

−A′ −B′V =
1

2
σ2V B2 − [κ∗θ∗ + (ρσω − κ∗)V ]B + ωr +

(
1

2
ω2 − 1

2
ω

)
V. (31)
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Thus A and B satisfy

−A′ = −κ∗θ∗B + ωr, (32a)

−B′ =
1

2
σ2B2 − (ρσω − κ∗)B +

1

2
ω2 − 1

2
ω, (32b)

with A(ω, 0) = 0 and B(ω, 0) = 0. Note that we use ′ to denote the first-order derivative. For

example, A′ = dA
dh

and B′ = dB
dh

. We first solve for B from equation (??) and then solve for A from

equation (??). Essentially, equation (??) is a Riccati equation. Let B(h) = q′(h)
q(h) · 2

σ2 and plug it

into equation (??), we obtain

q′′ − (ρσω − κ∗)q′ − 1

2
σ2

(
−1

2
ω2 +

1

2
ω

)
q = 0.

Thus the general solution for q is q(h) = C1e
λ1h + C2e

λ2h, where C1 and C2 are constants, and λ1

and λ2 solve

λ2 − (ρσω − κ∗)λ− 1

4
σ2(−ω2 + ω) = 0.

Thus λ1,2 =
ρσω−κ∗±d

2 with d =
√
(ρσω − κ∗)2 + σ2(−ω2 + ω). The solution for B(ω, h) is

B(ω, h) =
2

σ2
· C1λ1e

λ1h + C2λ2e
λ2h

C1eλ1h + C2eλ2h
. (33)

Since B(ω, 0) = 0, we obtain that C2 = −C1λ1/λ2. Plugging equation the expression for C2 into

equation (??), we obtain

B(ω, h) =
ρσω − κ∗ + d

σ2
· 1− e−dh

1− ge−dh
, (34)

with d =
√

(ρσω − κ∗)2 + σ2(−ω2 + ω) and g = ρσω−κ∗+d
ρσω−κ∗−d

. Now we solve for A(ω, h). First,

plugging equation (??) into equation (??) yields

A′ = κ∗θ∗ · ρσω − κ∗ + d

σ2
· 1− e−dt

1− ge−dt
− ωr. (35)

Let u(h) = e−dh, then u′ = −du. Plugging A′ = A′
u · u′ into equation (??) yields

A′
u · u′ = −A′

udu = κ∗θ∗ · ρσω − κ∗ + d

σ2
· 1− e−dt

1− ge−dt
− ωr.

Thus

A′
u = κ∗θ∗ · ρσω − κ∗ + d

σ2d
·
(
−1

u
+

1− g

1− gu

)
+

ωr

du
. (36)

The solution for equation (??) is

A = κ∗θ∗ · ρσω−κ∗+d
σ2d

·
[
−ln(u) + (1−g)ln(1−gu)

−g

]
+ ωr

d
ln(u) + C3

= κ∗θ∗ · ρσω−κ∗+d
σ2 · h+ κ∗θ∗ · ρσω−κ∗+d

σ2d
· g−1

g
ln

(
1− ge−dh

)
− ωrh+ C3,

(37)

where C3 is a constant. Since A(0) = 0, we obtain C3 = −κ∗θ∗ · ρσω−κ∗+d
σ2d

· g−1
g

ln (1− g). Thus

A(ω, h) = −ωrh+ κ∗θ∗ · ρσω − κ∗ + d

σ2
· h+ κ∗θ∗ · ρσω − κ∗ + d

σ2d
· g − 1

g
ln

[
1− ge−dh

1− g

]
. (38)
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Since (ρσω − κ∗ + d)g−1
g

= (ρσω − κ∗ + d) 2d
ρσω−κ∗−d

· ρσω−κ∗−d
ρσω−κ∗+d

= 2d, we rewrite the solution for A

as

A(ω, h) = −ωrh+ κ∗θ∗ · ρσω − κ∗ + d

σ2
· h+

2κ∗θ∗

σ2
ln

[
1− ge−dh

1− g

]
. (39)

Thus the solution for S(z, V, h) is given by

S(z, V, h) =
1

2πi

∫ C+i∞

C−i∞
ezωS̃(ω, V, h)dω, (40)

with S̃(ω, V, h) = 1
ω
e−A(ω,h)−B(ω,h)V , and the solutions for A(ω, h) and B(ω, h) are given by equa-

tions (??) and (??).

Appendix C: Volatility asymmetry at equity and asset value levels

In this appendix, we translate the correlation between asset value and variance shocks to a corre-

lation between equity and equity variance shocks. The stochastic process that the unlevered asset

value follows is given by
dXt

Xt
= (µ− δ)dt +

√
VtdW1, (41)

dVt = κ(θ − Vt)dt+ σ
√

VtdW2, (42)

where δ is the firm’s payout ratio and E(dW1dW2) = ρdt. Applying Itô’s lemma, we obtain that

dEt

Et
= µE,t +

Xt

Et

∂Et

∂Xt

√
XtdW1t +

1

Et

∂Et

Vt
σ
√

VtdW2t, (43)

where µE,t is the instantaneous equity return. The equity variance is given by

VE,t = C · Vt, (44)

where C =
(
Xt

Et

∂Et

∂Xt

)2
+

(
σ
Et

∂Et

∂Vt

)
+ ρσXt

E2
t

∂Et

Xt

∂Et

∂Vt
. Applying Itô’s lemma to VE,t given by equation

(??), we obtain that

dVE,t = µVE ,tdt+ σVE,tdW2t. (45)

Given the specification of the processes for equity and equity variance as in equations (??) and

(??), we obtain that the correlation between equity and equity variance is

ρE,t =

(
Xt

Et

∂Et

∂Xt
ρ+

σ

Et

∂Et

∂Vt

)
/C, (46)

where C =
(
Xt

Et

∂Et

∂Xt

)2
+

(
σ
Et

∂Et

∂Vt

)
+ ρσXt

E2
t

∂Et

Xt

∂Et

∂Vt
.
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Table 1: Calibrated Yield Spreads for Different Credit Ratings and Maturities. This

table reports the calibration results for the model in which the firm value follows the stochastic

volatility process. The yield spread is calculated as the difference between the bond yield and

risk-free rate. Following Huang and Huang (2003), we calibrate the initial asset value, long-run

mean of asset volatility and asset risk premium to match the target leverage ratio, equity premium

and cumulative default probability (columns 2-4). Given default, the firm recovers 51.31% of the

face value. The average yield spreads in the last column are the historically observed yield spreads

for the bonds as reported in Huang and Huang (2003). We choose the initial asset volatility to the

same as the long-run mean. The other parameter values are: ρ = −0.1, σ = 0.3, κ = 4 and k = 7.

Panel A: Maturity = 10 years

Target

Credit Leverage Equity Cumulative Implied Calculated Average % of

Rating Ratio Premium Default Prob. Asset Vol. Yld. Spread Yld. Spread Spread due to

(%) (%) (%) (%) (bps) (bps) Default

Aaa 13.1 5.38 0.77 31.3 60.3 63 95.7

Aa 21.2 5.60 0.99 27.4 67.5 91 74.2

A 32.0 5.99 1.55 24.8 89.4 123 72.7

Baa 43.3 6.55 4.39 25.3 159.8 194 82.4

Ba 53.5 7.30 20.63 32.3 361.2 320 112.8

B 65.7 8.76 43.91 39.8 584.7 470 124.4
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Panel B: Maturity = 4 years

Target

Credit Leverage Equity Cumulative Implied Calculated Average % of

Rating Ratio Premium Default Prob. Asset Vol. Yld. Spread Yld. Spread Spread due to

(%) (%) (%) (%) (bps) (bps) Default

Aaa 13.1 5.38 0.04 35.9 20.9 55 38.0

Aa 21.2 5.60 0.23 33.4 53.5 65 82.3

A 32.0 5.99 0.35 28.9 70.3 96 73.2

Baa 43.3 6.55 1.24 28.5 150.1 158 95.0

Ba 53.5 7.30 8.51 34.7 434.3 320 135.7

B 65.7 8.76 23.32 40.5 796.3 470 169.4

Panel C: Maturity = 1 year

Target

Credit Leverage Equity Cumulative Implied Calculated Average % of

Rating Ratio Premium Default Prob. Asset Vol. Yld. Spread Yld. Spread Spread due to

(%) (%) (%) (%) (bps) (bps) Default

Aa 21.2 5.60 0.03 53.5 12.4

A 32.0 5.99 0.01 41.4 3.5

Baa 43.3 6.55 0.12 40.7 57.8

Ba 53.5 7.30 1.29 45.1 303.1

B 65.7 8.76 6.47 50.1 944.8
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Table 2: Calibrated 10-year Yield Spreads for Different Credit Ratings and Parameter

Values. This table reports the calibration results for different parameter values of the stochastic

volatility model. The yield spread is calculated as the difference between the bond yield and risk-

free rate. Following Huang and Huang (2003), we calibrate the initial asset value, long-run mean

of asset volatility and asset risk premium to match the target leverage ratio, equity premium and

cumulative default probability (columns 2-4). Given default, the firm recovers 51.31% of the face

value. The average yield spreads in the last column are the historically observed yield spreads for

the bonds as reported in Huang and Huang (2003). We choose the initial asset volatility to the

same as the long-run mean.

Panel A: ρ = 0, σ = 0, κ = 0 and k = 0

Target

Credit Leverage Equity Cumulative Implied Calculated Average % of

Rating Ratio Premium Default Prob. Asset Vol. Yld. Spread Yld. Spread Spread due to

(%) (%) (%) (%) (bps) (bps) Default

Aaa 13.1 5.38 0.77 31.9 0 63 0

Aa 21.2 5.60 0.99 28.1 0 91 0

A 32.0 5.99 1.55 25.0 5.9 123 4.8

Baa 43.3 6.55 4.39 24.7 32.9 194 16.9

Ba 53.5 7.30 20.63 30.1 148.3 320 46.3

B 65.7 8.76 43.91 35.2 320.8 470 68.3

Panel B: ρ = 0, σ = 0.3, κ = 4 and k = 0

Target

Credit Leverage Equity Cumulative Implied Calculated Average % of

Rating Ratio Premium Default Prob. Asset Vol. Yld. Spread Yld. Spread Spread due to

(%) (%) (%) (%) (bps) (bps) Default

Aaa 13.1 5.38 0.77 31.5 0 63 0

Aa 21.2 5.60 0.99 27.6 0 91 0

A 32.0 5.99 1.55 24.9 3.7 123 3.0

Baa 43.3 6.55 4.39 25.0 31.8 194 16.4

Ba 53.5 7.30 20.63 31.4 151.1 320 47.2

B 65.7 8.76 43.91 38.6 341.1 470 72.6
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Panel C: ρ = −0.1, σ = 0.3, κ = 4 and k = 0

Target

Credit Leverage Equity Cumulative Implied Calculated Average % of

Rating Ratio Premium Default Prob. Asset Vol. Yld. Spread Yld. Spread Spread due to

(%) (%) (%) (%) (bps) (bps) Default

Aaa 13.1 5.38 0.77 31.2 0 63 0

Aa 21.2 5.60 0.99 27.4 0 91 0

A 32.0 5.99 1.55 24.6 3.2 123 2.7

Baa 43.3 6.55 4.39 24.8 31.0 194 16.0

Ba 53.5 7.30 20.63 31.2 149.8 320 46.8

B 65.7 8.76 43.91 38.5 340.3 470 72.4

Panel D: ρ = 0, σ = 0.3, κ = 4 and k = 7

Target

Credit Leverage Equity Cumulative Implied Calculated Average % of

Rating Ratio Premium Default Prob. Asset Vol. Yld. Spread Yld. Spread Spread due to

(%) (%) (%) (%) (bps) (bps) Default

Aaa 13.1 5.38 0.77 31.6 61.7 63 97.9

Aa 21.2 5.60 0.99 27.7 69.1 91 75.9

A 32.0 5.99 1.55 25.1 91.8 123 74.6

Baa 43.3 6.55 4.39 25.3 157.1 194 81.0

Ba 53.5 7.30 20.63 32.8 371.3 320 116.0

B 65.7 8.76 43.91 40.6 599.3 470 127.5
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Table 3: Calibrated Market Price of Volatility Risk for Different Credit Ratings and

Maturities. This table reports the calibrated asset volatility and ratio of the risk-neutral over the

objective expected asset variance of 3-month maturity (denoted Q/P ) for the stochastic volatil-

ity model. We calibrate the initial asset value, long-run mean of asset volatility, market price of

volatility risk and asset risk premium to match the target leverage ratio, equity premium, cumula-

tive default probability and historical average yield spread(columns 2-4). Given default, the firm

recovers 51.31% of the face value. The yield spread is calculated as the difference between the

bond yield and risk-free rate. The average yield spreads are the same as reported in Huang and

Huang (2003). We choose the initial asset volatility to the same as the long-run mean. The other

parameter values are: ρ = −0.1, σ = 0.3, and κ = 4.

Panel A: Maturity = 10 years

Target

Credit Leverage Equity Cumulative Average Implied Ratio of Exp. λV

Rating Ratio Premium Default Prob. Yld. Spread Asset Vol. Asset Var.

(%) (%) (%) (bps) (%) (Q/P)

Aaa 13.1 5.38 0.77 63 31.6 1.534 -2.55

Aa 21.2 5.60 0.99 91 27.4 1.503 -2.43

A 32.0 5.99 1.55 123 24.1 1.494 -2.40

Baa 43.3 6.55 4.39 194 25.3 1.486 -2.37

Ba 53.5 7.30 20.63 320 32.3 1.353 -1.83

B 65.7 8.76 43.91 470 39.8 1.222 -1.23

Panel B: Maturity = 4 years

Target

Credit Leverage Equity Cumulative Average Implied Ratio of Exp. λV

Rating Ratio Premium Default Prob. Yld. Spread Asset Vol. Asset Var.

(%) (%) (%) (bps) (%) (Q/P)

Aaa 13.1 5.38 0.04 55 35.6 1.535 -2.55

Aa 21.2 5.60 0.23 65 33.7 1.447 -2.22

A 32.0 5.99 0.35 96 28.6 1.436 -2.17

Baa 43.3 6.55 1.24 158 28.5 1.425 -2.12

Ba 53.5 7.30 8.51 320 34.6 1.285 -1.53

B 65.7 8.76 23.32 470 40.5 1.074 -0.45

40



Table 4: New Calibration Results for Different Credit Ratings and Maturities. This

table reports the calibrated asset volatility and ratio of the risk-neutral over the objective expected

asset variance of 3-month maturity (denoted Q/P ) for the stochastic volatility model. We calibrate

the initial asset value, long-run mean of asset volatility, market price of volatility risk, asset risk

premium and mean-reversion parameter to match the target leverage ratio, equity premium, cumu-

lative default probability, historical average yield spread and equity volatility (columns 2-5). Given

default, the firm recovers 51.31% of the face value. The yield spread is calculated as the difference

between the bond yield and risk-free rate. The average yield spreads are the same as reported in

Huang and Huang (2003). We choose the initial asset volatility to the same as the long-run mean.

The other parameter values are: ρ = −0.1 and σ = 0.3.

Panel A: Maturity = 10 years

Target

Credit Lev. Equity Cumulative Average Equity Implied Ratio of Exp. λV

Rating Ratio Prem. Def. Prob. Yld. Sprd Vol. Asset Vol. Asset Var.

(%) (%) (%) (bps) (%) (%) (Q/P)

Aaa 13.1 5.38 0.77 63 24.5 21.6 1.560 -2.34

Aa 21.2 5.60 0.99 91 26.5 21.3 1.511 -2.14

A 32.0 5.99 1.55 123 28.5 21.3 1.508 -2.16

Baa 43.3 6.55 4.39 194 31.8 21.5 1.452 -1.92

Ba 53.5 7.30 20.63 320 42.7 25.8 1.387 -1.68

B 65.7 8.76 43.91 470 53.8 37.6 1.228 -1.26

Panel B: Maturity = 4 years

Target

Credit Lev. Equity Cumulative Average Equity Implied Ratio of Exp. λV

Rating Ratio Prem. Def. Prob. Yld. Sprd Vol. Asset Vol. Asset Var.

(%) (%) (%) (bps) (%) (%) (Q/P)

Aaa 13.1 5.38 0.04 55 24.5 21.8 1.481 -1.98

Aa 21.2 5.60 0.23 65 26.5 22.4 1.441 -1.88

A 32.0 5.99 0.35 96 28.5 22.1 1.424 -1.86

Baa 43.3 6.55 1.24 158 31.8 22.4 1.411 -1.80

Ba 53.5 7.30 8.51 320 42.7 25.4 1.234 -1.02

B 65.7 8.76 23.32 470 53.8 37.3 1.168 -0.84
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Table 5: New Calibration Results for Different Credit Ratings and Maturities with

Liquidity Correction. This table reports the calibrated asset volatility and ratio of the risk-

neutral over the objective expected asset variance of 3-month maturity (denoted Q/P ) for the

stochastic volatility model. We calibrate the initial asset value, long-run mean of asset volatility,

market price of volatility risk, asset risk premium and mean-reversion parameter to match the target

leverage ratio, equity premium, cumulative default probability, historical average credit spread and

equity volatility (columns 2-5). The credit spread for each credit rating is calculated as the yield

spread minus the 1-year AAA yield spread (51 bps) as in Almeida and Philippon (2007). Given

default, the firm recovers 51.31% of the face value. The yield spread is calculated as the difference

between the bond yield and risk-free rate. The average yield spreads are the same as reported in

Huang and Huang (2003). We choose the initial asset volatility to the same as the long-run mean.

The other parameter values are: ρ = −0.1 and σ = 0.3.

Panel A: Maturity = 10 years

Target

Credit Lev. Equity Cumulative Average Equity Implied Ratio of Exp. λV

Rating Ratio Prem. Def. Prob. Credit Sprd Vol. Asset Vol. Asset Var.

(%) (%) (%) (bps) (%) (%) (Q/P)

Aaa 13.1 5.38 0.77 12 24.5 21.6 1.391 -1.76

Aa 21.2 5.60 0.99 40 26.5 21.3 1.365 -1.64

A 32.0 5.99 1.55 72 28.5 21.3 1.358 -1.63

Baa 43.3 6.55 4.39 143 31.8 21.5 1.326 -1.47

Ba 53.5 7.30 20.63 269 42.7 25.8 1.309 -1.40

B 65.7 8.76 43.91 419 53.8 37.6 1.222 -1.21

Panel B: Maturity = 4 years

Target

Credit Lev. Equity Cumulative Average Equity Implied Ratio of Exp. λV

Rating Ratio Prem. Def. Prob. Credit Sprd Vol. Asset Vol. Asset Var.

(%) (%) (%) (bps) (%) (%) (Q/P)

Aaa 13.1 5.38 0.04 4 24.5 21.8 1.447 -1.87

Aa 21.2 5.60 0.23 14 26.5 22.4 1.433 -1.86

A 32.0 5.99 0.35 45 28.5 22.1 1.420 -1.85

Baa 43.3 6.55 1.24 107 31.8 22.4 1.406 -1.78

Ba 53.5 7.30 8.51 269 42.7 25.4 1.278 -1.19

B 65.7 8.76 23.32 419 53.8 37.3 1.152 -0.77
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Table 6: Calibration Results for the Market Price of Volatility Risk for Different Credit

Ratings and Maturities. This table reports the calibrated results for the market price of volatility

risk for the stochastic volatility model. In columns 2 and 6, we report the ratio of the risk-neutral

long-run mean over the objective long-run mean for asset variance. In columns 3, 4, 7 and 8, we

report ratios of the risk-neutral over the objective expected asset variance (of 3-month maturity

in columns 3 and 7 and of 1-month maturity in columns 4 and 8). In the 5-target calibration, we

calibrate the initial asset value, long-run mean of asset volatility, market price of volatility risk

and asset risk premium to match the target leverage ratio, equity premium, cumulative default

probability and historical average yield spread. In the 6-target calibration, we calibrate the initial

asset value, long-run mean of asset volatility, market price of volatility risk, asset risk premium and

mean-reversion parameter to match the target leverage ratio, equity premium, cumulative default

probability, historical average yield spread and equity volatility. Given default, the firm recovers

51.31% of the face value. The yield spread is calculated as the difference between the bond yield

and risk-free rate. The average yield spreads are the same as reported in Huang and Huang (2003).

We choose the initial asset volatility to the same as the long-run mean. The other parameter values

are: ρ = −0.1, σ = 0.3 & κ = 4 for 5-target calibration, and ρ = −0.1 & σ = 0.3 for 6-target

calibration.

Panel A: Maturity = 10 years

5-target Case 6-target Case

Credit Ratio of Ratio of Exp. Asset Var. λV Ratio of Ratio of Exp. Asset Var. λV

Rating LR Mean 3 Months 1 Month LR Mean 3 Months 1 Month

Aaa 2.756 1.534 1.200 -2.55 7.693 1.560 1.192 -2.34

Aa 2.548 1.503 1.190 -2.43 6.668 1.511 1.175 -2.14

A 2.496 1.494 1.187 -2.40 5.382 1.508 1.175 -2.16

Baa 2.454 1.486 1.184 -2.37 5.001 1.452 1.157 -1.92

Ba 1.843 1.353 1.139 -1.83 3.572 1.387 1.136 -1.68

B 1.444 1.222 1.092 -1.23 1.460 1.228 1.094 -1.26
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Panel B: Maturity = 4 years

5-target Case 6-target Case

Credit Ratio of Ratio of Exp. Asset Var. λV Ratio of Ratio of Exp. Asset Var. λV

Rating LR Mean 3 Months 1 Month LR Mean 3 Months 1 Month

Aaa 2.759 1.535 1.200 -2.55 9.819 1.481 1.163 -1.98

Aa 2.241 1.447 1.172 -2.21 4.665 1.441 1.153 -1.88

A 2.190 1.436 1.168 -2.40 3.475 1.424 1.150 -1.86

Baa 2.139 1.425 1.164 -2.13 3.472 1.411 1.145 -1.80

Ba 1.619 1.285 1.115 -1.53 2.480 1.234 1.083 -1.02

B 1.127 1.074 1.032 -0.45 1.455 1.168 1.065 -0.84

Panel C: Calibration results with liquidity correction

Maturity = 10 years Maturity = 4 years

Credit Ratio of Ratio of Exp. Asset Var. λV Ratio of Ratio of Exp. Asset Var. λV

Rating LR Mean 3 Months 1 Month LR Mean 3 Months 1 Month

Aaa 2.833 1.391 1.141 -1.76 6.194 1.447 1.154 -1.87

Aa 2.745 1.365 1.132 -1.64 4.207 1.433 1.151 -1.86

A 2.538 1.358 1.130 -1.63 3.372 1.420 1.149 -1.85

Baa 2.485 1.326 1.118 -1.47 3.372 1.406 1.144 -1.78

Ba 2.386 1.309 1.112 -1.40 3.204 1.278 1.097 -1.19

B 1.460 1.222 1.091 -1.21 1.393 1.152 1.059 -0.77
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Table 7: Calibrated Yield Spreads for Different Credit Ratings and Maturities for the

Stochastic Model with Merton Default. This table reports the calibration results for the

model in which the firm value follows the stochastic volatility process and the default only occurs

at maturity. The yield spread is calculated as the difference between the bond yield and risk-free

rate. Following Huang and Huang (2003), we calibrate the initial asset value, long-run mean of

asset volatility and asset risk premium to match the target leverage ratio, equity premium and

cumulative default probability (columns 2-4). Given default, the firm recovers 51.31% of the face

value. The average yield spreads in the last column are the historically observed yield spreads for

the bonds as reported in Huang and Huang (2003). We choose the initial asset volatility to the

same as the long-run mean. The other parameter values are: ρ = −0.1, σ = 0.3, κ = 4 and k = 7.

Panel A: Maturity = 10 years

Target

Credit Leverage Equity Cumulative Implied Calculated Average % of

Rating Ratio Premium Default Prob. Asset Vol. Yld. Spread Yld. Spread Spread due to

(%) (%) (%) (%) (bps) (bps) Default

Aaa 13.1 5.38 0.77 33.6 54.9 63 87.1

Aa 21.2 5.60 0.99 30.1 63.3 91 69.6

A 32.0 5.99 1.55 27.1 77.1 123 62.7

Baa 43.3 6.55 4.39 28.9 144.6 194 74.5

Ba 53.5 7.30 20.63 39.8 355.1 320 111.0

B 65.7 8.76 43.91 57.6 665.2 470 141.5

Panel B: Maturity = 4 years

Target

Credit Leverage Equity Cumulative Implied Calculated Average % of

Rating Ratio Premium Default Prob. Asset Vol. Yld. Spread Yld. Spread Spread due to

(%) (%) (%) (%) (bps) (bps) Default

Aaa 13.1 5.38 0.04 36.1 9.4 55 17.1

Aa 21.2 5.60 0.23 34.8 43.3 65 66.6

A 32.0 5.99 0.35 30.2 54.2 96 56.5

Baa 43.3 6.55 1.24 31.2 137.1 158 86.8

Ba 53.5 7.30 8.51 39.5 392.8 320 122.8

B 65.7 8.76 23.32 53.2 829.7 470 176.5
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Table 8: Summary Statistics by Ratings. This table reports the summary statistics on the

CDS spreads and the underlying firms from January 2002 to December 2008. Equity volatility is

estimated using 5-minute intraday returns. Leverage ratio is calculated as the ratio of the total

liabilities over the total asset, which is the sum of the total liability and equity market value. Asset

payout ratio is the weighted average of dividend payout and interest expense over the total asset.

Panel A: Firm Characteristics

Credit Firms Equity Leverage Asset

Rating Volatility (%) Ratio (%) Payout (%)

AAA a 1 24.29 63.67 2.83

AA 1 21.99 25.81 1.36

A 16 27.19 37.95 2.33

BBB 22 27.72 48.51 2.12

BB 7 35.18 51.01 2.50

B 2 41.24 77.10 2.66

Panel B: CDS Spreads (%)

Credit Rating 1-year 2-year 3-year 5-year 7-year 10-year

AAA 0.45 0.49 0.52 0.58 0.60 0.63

AA 0.12 0.14 0.17 0.22 0.25 0.30

A 0.28 0.33 0.37 0.45 0.51 0.57

BBB 0.40 0.47 0.54 0.67 0.75 0.85

BB 0.75 0.86 1.00 1.35 1.44 1.57

B 3.73 4.22 4.49 4.80 4.78 4.77

Panel C: CDS Spreads Std. Dev. (%)

Credit Rating 1-year 2-year 3-year 5-year 7-year 10-year

AAA 1.16 1.12 1.08 0.98 0.90 0.85

AA 0.16 0.16 0.17 0.18 0.17 0.17

A 0.39 0.40 0.40 0.39 0.37 0.36

BBB 0.49 0.49 0.50 0.49 0.47 0.45

BB 0.86 0.89 0.88 0.88 0.83 0.85

B 7.78 7.02 6.40 5.70 5.17 4.70

aNote that the only AAA-rated company in our sample is GE.
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Table 9: Specification Test of the Stochastic Volatility Model. This table reports the GMM

test results of the stochastic volatility model. Panel A reports the parameter estimates, p-values

(in parentheses) and J-statistic. Panel B reports the average and absolute pricing errors of CDS

spreads and equity volatility. Panel C reports the average and absolute percentage pricing errors

of CDS spreads and equity volatility. The pricing errors are calculated as the time-series average,

absolute, average percentage and absolute percentage differences between the model-implied and

observed values.

Panel A: Parameter Estimates

Credit Rating ρ κ∗ σ XB/100 θ∗(%) J-stat Proportion of Not Rejected

Sig. level=0.01 0.05

Overall -0.58 0.98 0.37 0.67 5.34 1.637 48/49 46/49

(0.007) (0.008) (0.007) (0.013) (0.011)

AAA -0.47 1.2 0.24 0.70 3.06 0.924 1/1 1/1

(0.006) (0.008) (0.005) (0.014) (0.008)

AA -0.54 0.8 0.36 0.62 6.40 0.672 1/1 1/1

(0.008) (0.012) (0.005) (0.018) (0.011)

A -0.56 1.2 0.42 0.68 4.58 1.008 17/17 16/17

(0.006) (0.009) (0.007) (0.014) (0.007)

BBB -0.61 0.9 0.31 0.67 5.20 2.352 21/22 20/22

(0.008) (0.007) (0.008) (0.010) (0.011)

BB -0.59 0.8 0.45 0.70 6.92 1.260 6/6 6/6

(0.007) (0.009) (0.004) (0.015) (0.012)

B -0.65 0.5 0.32 0.75 9.24 1.092 2/2 2/2

(0.012) (0.009) (0.007) (0.018) (0.017)
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Panel B: Average and Absolute Pricing Errors

Credit Average Pricing Error (%) Absolute Pricing Error (%)

Rating CDS Spreads Equity Volatility CDS Spreads Equity Volatility

Overall -0.18 0.15 0.26 0.35

AAA -0.15 0.03 0.18 0.14

AA -0.04 0.08 0.07 0.12

A -0.03 0.12 0.17 0.06

BBB -0.13 0.10 0.19 0.55

BB -0.59 0.36 0.55 0.45

B -0.61 0.23 0.96 0.34

Panel C: Average and Absolute Percentage Pricing Errors

Credit Average Percentage Pricing Error (%) Absolute Percentage Pricing Error (%)

Rating CDS spreads Equity Volatility CDS spreads Equity Volatility

Overall -10.16 0.40 29.61 0.96

AAA -27.42 0.12 32.90 0.58

AA -20.02 0.36 35.04 0.55

A -7.16 0.41 36.65 0.20

BBB -11.16 0.28 25.25 1.55

BB -19.28 0.78 24.43 0.97

B 22.34 0.56 35.06 0.82
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Table 10: Specification Test of the Black and Cox (1976) Model. This table reports the

GMM test results of the Black and Cox (1976) model. Panel A reports the parameter estimates,

p-values (in parentheses) and J-statistic. Panel B reports the average and absolute pricing errors

of CDS spreads and equity volatility. Panel C reports the average and absolute percentage pricing

errors of CDS spreads and equity volatility. The pricing errors are calculated as the time-series av-

erage, absolute, average percentage and absolute percentage differences between the model-implied

and observed values.

Panel A: Parameter Estimates

Credit Rating Asset Vol(%) XB/100 J-stat Proportion of Not Rejected

Sig. level=0.01 0.05

Overall 12.41 1.31 15.112 4/49 1/49

(0.008) (0.036)

AAA 10.01 1.067 11.413 0/1 0/1

(0.004) (0.016)

AA 11.75 1.795 8.487 1/1 0/1

(0.010) (0.051)

A 10.15 1.586 16.396 0/16 0/16

(0.008) (0.042)

BBB 12.45 1.201 15.263 2/22 0/22

(0.008) (0.034)

BB 14.35 1.125 11.545 1/7 1/7

(0.007) (0.031)

B 20.17 0.804 20.822 0/2 0/2

(0.006) (0.028)
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Panel B: Average and Absolute Pricing Errors

Credit Average Pricing Error (%) Absolute Pricing Error (%)

Rating CDS Spreads Equity Volatility CDS Spreads Equity Volatility

Overall -0.48 -3.96 0.50 10.85

AAA -0.27 3.04 0.29 10.35

AA 0.08 -1.56 0.27 8.41

A -0.31 -5.01 0.31 11.22

BBB -0.43 -1.81 0.43 8.14

BB -0.74 -8.09 0.76 12.99

B -1.77 -9.46 2.20 31.94

Panel C: Average and Absolute Percentage Pricing Errors

Credit Average Percentage Pricing Error (%) Absolute Percentage Pricing Error (%)

Rating CDS spreads Equity Volatility CDS spreads Equity Volatility

Overall -65.44 -6.56 67.31 29.51

AAA -25.11 17.63 40.69 51.64

AA -61.11 6.55 65.67 35.91

A -73.02 -4.64 73.73 32.32

BBB -68.09 -9.53 68.08 24.15

BB -62.17 -3.74 64.16 32.61

B -9.36 -17.69 32.64 41.08
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Table 11: Summary Statistics of Individual Names. This table reports the ratings, 5-year

CDS spread, equity volatility, leverage ratio and asset payout ratio for each of the 49 firms.

Last 5-year Equity Leverage Asset

Company Name Rating CDS(%) Volatility (%) Ratio (%) Payout(%)

Amgn Inc A 0.392 26.94 15.99 0.42

Arrow Electronics Inc BBB 1.357 35.48 55.89 1.76

Boeing Co A 0.441 29.89 50.51 1.58

Baxter Intl Inc A 0.343 26.66 26.42 1.59

Bristol Myers Squibb Co A 0.297 27.28 25.09 3.95

Boston Scientific Corp BB 0.816 35.41 24.53 0.75

Conagra Inc BBB 0.440 21.10 41.21 3.56

Caterpillar Inc A 0.359 26.43 54.47 2.45

Cigna Corp BBB 0.680 30.36 77.62 0.27

Comcast Corp New BBB 1.138 31.93 61.15 1.91

Campbell Soup Co A 0.277 21.98 32.10 2.49

Computer Sciences Corp BBB 0.613 28.78 46.44 1.17

Du Pont Co A 0.275 24.43 36.84 2.81

Deere & Co A 0.394 29.40 58.44 2.61

Disney Walt Co A 0.492 27.27 34.68 1.49

Dow Chemical Co A 0.658 27.37 45.31 3.21

Darden Restaurants Inc BBB 0.689 32.41 31.42 1.69

Devon Energy Corp BBB 0.553 33.31 44.82 1.87

Eastman Kodak Co B 2.136 32.64 60.35 2.12

Eastman Chemical Co BBB 0.658 29.04 53.05 3.13

Ford Motor Co B 7.471 41.29 93.85 3.21

Fortune Brands Inc BBB 0.570 21.48 36.96 2.31

General Electric Co AAA 0.584 24.29 63.68 2.83

General Mills Inc BBB 0.432 17.76 40.72 3.03

Goodrish Corp BBB 0.780 28.43 52.39 2.55

Honeywell Intl Inc A 0.359 28.39 40.17 2.10

Intl Paper Co BBB 0.932 28.74 56.38 3.08

Ingersoll Rand Co BBB 0.414 28.12 39.39 1.91

J C Penny Co Inc BB 2.09 39.93 50.98 1.94

Kraft Foods Inc BBB 0.464 21.12 52.20 2.76

Kroger Company BBB 0.641 29.25 52.34 1.93
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Last 5-year Equity Leverage Asset

Company Name Rating CDS(%) Volatility (%) Ratio (%) Payout(%)

Marriott Intl Inc New BBB 0.894 27.06 32.10 1.29

Mcdonalds Corp A 0.285 25.45 25.70 2.31

Mckesson Inc BBB 0.564 27.67 53.14 0.76

Northrop Grumman Corp BBB 0.459 20.99 46.26 2.08

Newell Rubbermaid Inc BBB 0.572 26.50 41.99 3.03

Olin Corp BB 1.247 37.83 48.51 3.11

Radioshack Corp BB 1.136 37.90 29.09 1.64

Raytheon Co BBB 0.599 28.09 43.06 2.33

Sherwin Williams Co A 0.486 29.66 31.15 1.99

Supervalu Inc BB 1.526 27.78 60.52 3.21

Safeway Inc BBB 0.646 30.68 48.76 2.01

A T&T Corp A 1.249 28.29 43.81 3.50

Target Corp A 0.392 30.47 35.16 1.48

Temple Inland Inc BB 1.411 31.01 81.40 3.75

Tyson Foods Inc BB 1.254 36.37 62.01 3.11

Verizon Communications Inc A 0.621 25.19 51.37 3.40

Whirlpool Corp BBB 0.683 31.38 59.95 2.16

Wal Mart Stores Inc AA 0.215 21.97 25.81 1.36
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Table 12: Equity Leverage Effect (ρE). This table reports the calculated leverage effect of

equity (column 10) for each credit rating. We report the parameter values used to calculate the

equity leverage effect in column 2-9.

Credit Equity Leverage Asset ρ κ∗ σ XB/100 θ∗ ρE

Rating Volatility (%) Ratio (%) Payout (%) (%)

AAA 24.29 63.67 2.83 -0.47 1.2 0.24 0.70 3.06 -0.57

AA 21.99 25.81 1.36 -0.54 0.8 0.36 0.62 6.40 -0.53

A 27.19 37.95 2.33 -0.56 1.2 0.42 0.68 4.58 -0.69

BBB 27.72 48.51 2.12 -0.61 0.9 0.31 0.67 5.20 -0.68

BB 35.18 51.01 2.50 -0.59 0.8 0.45 0.70 6.92 -0.67

B 41.24 77.10 2.66 -0.65 0.5 0.32 0.75 9.24 -0.74
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