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Abstract

Observable covariates are useful for predicting default, but several �ndings question their

value for explaining credit spreads. We introduce a discrete time no-arbitrage model with

observable covariates, which allows for a closed form solution for the value of credit default

swaps (CDS). The default intensity is a quadratic function of the covariates, speci�ed such

that it is always positive. The model yields economically sensible results in terms of �t and the

economic impact of the covariates. Macroeconomic and �rm-speci�c information can explain

most of the variation in CDS spreads over time and across �rms, even with a parsimonious

speci�cation. These �ndings resolve the existing disconnect in the literature regarding the

value of observable covariates for credit risk pricing and default prediction. Our results also

suggest that although CDS spreads are highly auto-correlated, analyzing spread levels may be

preferable to analyzing di¤erences for daily CDS data.
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1 Introduction

Many studies have shown that observable covariates are very useful in predicting default. Shumway

(2001) demonstrates that �rm speci�c variables such as the excess stock return, stock return volatil-

ity, the ratio of net income to total assets, and the ratio of total liabilities to total assets can explain

the probability of default. Du¢ e, Saita and Wang (2007) use distance to default, the �rm�s stock

return, the three month Treasury bill yield, and the one-year trailing S&P 500 index return as ex-

planatory variables to estimate the probability of default. Given these studies on default prediction

under the natural probability measure, it is reasonable to ask whether observable covariates are

also key determinants of the prices of credit risky securities. The main contribution of this paper is

to answer this question using data on corporate credit default swaps (CDS), derivatives contracts

contingent on a �rm�s default.

When pricing corporate bonds and CDSs, it is necessary to estimate the loss distribution under

the pricing probability measure. There are several approaches to identifying the observable deter-

minants of credit spreads for corporate bonds and CDSs. One approach uses structural models of

default, following Merton (1974).1 In these models, the observable covariates are determined by

the underlying theory. For example, in the simplest structural models suggested by Merton (1974)

and Black and Cox (1976), credit spreads are determined by interest rates, �rm asset volatility, and

�rm leverage. However, several authors have come to the conclusion that structural models do a

poor job of explaining credit spreads for corporate bonds and CDSs.2 These �ndings cast doubt on

the value of observable covariates for explaining credit risk.

There is a large literature that attempts to explain credit spreads, or credit spread changes,

by regressing on observable covariates. Overall, this literature questions the explanatory power of

observable covariates for credit spreads; see for instance Collin-Dufresne, Goldstein, and Martin

(2001). The evidence from linear regressions, together with that from structural models, suggests

a disconnect between the literature on default prediction, where observable covariates are highly

successful, and the literature explaining credit spreads, where observable covariates are much less

useful.

An alternative to the use of structural models for pricing corporate bonds and CDSs is the

reduced-form approach, introduced by Jarrow and Turnbull (1992, 1995). Presumably in part

because of the shortcomings of models with observable covariates, the reduced form approach is

1See also Black and Cox (1976), Collin-Dufresne and Goldstein (2001), Cremers, Driessen, and Maenhout (2008),
Geske (1977), Kim, Ramaswamy and Sundaresan (1993), Leland (1994), Leland and Toft (1996), and Longsta¤ and
Schwartz (1995).

2See for example Eom, Helwege, and Huang (2004) and Huang and Zhou (2008).
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usually implemented using latent factors.3 Latent factor models usually provides a good in-sample

�t. However, while the estimated latent factors can be compared to observables, they do not provide

much intuition with respect to the economy-wide and �rm-speci�c determinants of credit risk.

We follow Lando (1998) and assume that the default intensity in a reduced-form model is a Cox

process depending on macroeconomic and observable �rm speci�c covariates. We introduce a new

discrete time no-arbitrage model with observable covariates, where the dynamics for the stopping

time are described by a quadratic function of these covariates, and we derive a recursive closed form

solution for the pricing of CDSs. The advantage of our no-arbitrage model is that estimated spreads

are positive by construction without restricting model coe¢ cients, and that estimated spreads are

internally consistent across maturities.

The model is estimated using daily data for eighty-three �rms for the period January 2002 to

March 2008. We use one, three, and �ve year maturity CDS spreads in estimation.4 We show

that observable covariates are adequate at explaining the variation in credit spreads over time and

across �rms. Our preferred model is a very parsimonious speci�cation, with four covariates: two

covariates extracted from the riskless term structure, the �rm�s distance-to-default computed using

option-implied volatility, and the VIX. These covariates are suggested by the structural model of

Merton (1974), and the estimated signs on the covariates in the resulting speci�cation are therefore

easily interpretable from a theoretical perspective. This model provides a good �t, and the impact

of the VIX and the �rm�s distance-to-default on credit spreads have the expected sign for more than

93% of estimated �rms. We also investigate richer models with more extensive sets of covariates.

While richer models may achieve somewhat better �t, the improvements on the more parsimonious

speci�cation are modest.

While our focus is on the performance of the no-arbitrage model, we also investigate linear

regressions, because our results seem to contradict the �ndings in extant literature regarding the

limited explanatory power of observable covariates for credit spreads. We argue that the evidence

from both approaches is in fact consistent, both in terms of �t and economic impact of observable

covariates. However, the interpretation of results depends on whether one analyzes credit spreads

and observable covariates in levels or di¤erences.

This raises the question which speci�cation is preferable, levels or di¤erences? We provide

a detailed analysis of the economic impact of covariates on credit spreads using regressions, and

3For latent-factor reduced-form studies of corporate bonds, see for example Du¢ e and Singleton (1999), Du¤ee
(1999), Driessen (2005), and Feldhutter and Lando (2007). For studies of credit default swaps, see Houweling
and Vorst (2005) and Chen, Cheng, Fabozzi, and Liu (2008). Longsta¤, Mithal, and Neis (2003) link the implied
probabilities of default in corporate bond and credit default swap markets, and �nd pricing inconsistencies between
both markets.

4Bakshi, Madan, and Zhang (2006) provide a related analysis of observable determinants of corporate bond spreads
within a no-arbitrage model.
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the role of statistical assumptions in measuring this impact. We argue that while the analysis of

spread di¤erences facilitates the interpretation of certain measures of �t, the resulting estimation is

potentially statistically more ine¢ cient than the analysis of spread levels, and this may complicate

inference; see Harvey (1980) and Maeshiro and Vali (1988). This problem is particularly acute for

daily di¤erences of CDS spreads, because the resulting signal-to-noise ratio is very low. There is

additional motivation for the analysis of credit spread levels. First, while the time series of credit

default swap spreads and observable covariates are highly auto-correlated, they are mean-reverting

and not characterized by long term stochastic trends, as opposed to many other �nancial and

economic variables.5 Second, the covariates we analyze are explicitly suggested by theory, and it is

therefore less likely that we would be uncovering spurious relationships using levels regressions.

We expand on this argument by demonstrating that while di¤erencing a time series of daily

spreads yields very di¤erent results compared to a levels regression, di¤erencing lower frequency

data con�rms the results from levels regressions. We conclude that the choice of levels versus

di¤erences in the credit risk literature should depend on the frequency of the data. For the monthly

bond data analyzed in Collin-Dufresne, Goldstein, and Martin (2001), di¤erencing the data may be

the best choice, whereas for daily CDS data, analyzing levels may be preferable.

In summary, this paper makes four contributions. First, it describes a new discrete time, closed

form model with observable covariates for pricing credit risky assets. The intensity function is a

quadratic function of the covariates, speci�ed such that it is strictly positive without restrictions of

the signs of the coe¢ cients. Second, the no-arbitrage model yields sensible results in terms of �t and

the economic impact of covariates on spreads. The methodological advantages of the no-arbitrage

model and the consistency across maturities imposed in estimation do not come at the cost of

empirical �t and statistical signi�cance. Third, we analyze the underlying statistical assumptions

appropriate for di¤erent data frequencies. We argue that for the analysis of daily CDS spreads,

analyzing spread levels may be preferable to analyzing spread di¤erences. Fourth, the empirical

results provide strong evidence that observable covariates are useful in explaining credit spreads,

which is consistent with the evidence regarding default prediction, therefore resolving an important

disconnect in the existing literature.

The paper proceeds as follows. In Section 2, we introduce the new discrete time no-arbitrage

model for CDSs. Both the term structure of interest rates and the process for the stopping time

are described by quadratic functions of observable covariates. Section 3 presents a case study of

the �rm The Gap, Inc., to provide more intuition for the model�s features. The data are described

in Section 4. In Section 5, we present empirical results for eighty-three �rms using a parsimonious

speci�cation with four observable covariates, and compare the estimates to those obtained using

5See Cremers, Driessen, Maenhout, and Weinbaum (2008) for a similar argument.
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linear regression. We also examine the implications of alternative statistical assumptions. In Section

6 we consider various robustness tests. Section 7 concludes.

2 Model Description

In this section we describe the pricing models for the default free term structure and for CDSs.

We work in discrete time and assume factors are described by compound autoregressive processes.

See Gourieroux and Jasiak (2006) for an overview of these processes. We use a quadratic model.

See Bekaert, Cho and Moreno (2006) and Ang and Piazzesi (2003) for applications of discrete time

Gaussian frameworks, and Gourieroux, Monfort and Polimenis (2006) for an application of the

discrete equivalent of the CIR model.

2.1 Default Free Bonds

The spot interest rate over a given period is assumed to be a quadratic function of the form

rt =

 
�0 +

nX
k=1

�kX
r
k;t

!2
;

where fXr
k;tg are factors.6 It is assumed that these can be described by the following AR(1)

dynamics:

Xr
t = �r + �rX

r
t�1 + et; (2.1)

where Xr
t denotes a (n; 1) vector, et � N(0;�r), �r is a (n; 1) vector and �r and �r are (n; n)

matrices. The price of a default-free zero coupon bond is given by

B(t; t+ h) = E[exp(�rt � :::� rt+h�1)jrt]:

It is shown in Appendix A that this can be written in the form

B(t; t+ h) = exp(Ah +B
0
hX

r
t +X

r0
t ChX

r
t ); (2.2)

where the explicit de�nitions of the coe¢ cients Ah, Bh and Ch are derived recursively.

6See for example Longsta¤ (1989), Ahn, Dittmar, and Gallant (2002), Constantinides (1992), Brandt and Chap-
man (2002), Ang, Boivin and Dong (2008), and Leippold and Wu (2002) for quadratic term structure models. See
Gourieroux and Monfort (2007) for an application of a discrete time quadratic factor model to mortality intensity
modeling.
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2.2 Credit Default Swap Valuation

We follow the discrete time modeling of default described in Gourieroux, Monfort, and Polimenis

(2006). A stopping time has an intensity process �(t). Given no default up to time t, the probability

of no default over the next interval is exp(��(t)). A default time for an obligor generates a default
process N(t) that is zero before default and one after default. The probability for an obligor

surviving until at least interval h is given by

Pt[� > t+ h] = Et

"
exp

 
�

h�1X
j=0

�t+j

!#
; (2.3)

where � denotes the time of default.

Default can arise from events that a¤ect a particular sector or the whole economy or are unique

to the obligor. For example, in the current credit crisis the fall in house prices has been one of the

major drivers of default by home owners. The fall in house prices occurred across many di¤erent

states, eventually triggering default by mortgage originators and �nancial institutions. However,

a particular institution�s leverage and portfolio composition a¤ected its chances of survival.7 We

assume that default for an obligor depends on a set of measurable covariates - see Lando (1994,

1998). The intensity is assumed to depend on the same factors that a¤ect the default free term

structureXr
k;t and on other macro and obligor speci�c factors denoted by fXd

k;tg, and is also assumed
to be a quadratic function of these covariates

�t =

 
�0 +

nX
k=1

�kX
r
k;t +

mX
k=1

�k;XdXd
k;t

!2
: (2.4)

The advantage of a quadratic speci�cation is that the intensity function will be strictly positive.

This is not the case for a linear speci�cation if the state variables are assumed to be Gaussian. If

they are assumed to follow CIR processes, then it is necessary to restrict the parameters of the

process and the coe¢ cients restricted to be positive. Let

Xt+j �
"
Xr
t+j

Xd
t+j

#
denote a (q; 1) vector, where q = n+m, where n is the number of term structure factors and m the

7See Crouhy, Jarrow, and Turnbull (2008) for a description of the many di¤erent factors that contributed to the
crisis.
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number of additional covariates. It is shown in Appendix B that

rt+j + �t+j = 0 + 
0
1Xt+j +X

0
t+j
Xt+j: (2.5)

It is assumed that

Xt = �+ �Xt�1 + et; (2.6)

where et � N(0;�), � is a (q; 1) vector and � and � are (q; q) matrices.
For a CDS, we �rst consider the payments by the protection buyer. When entering into a

contract, the protection buyer may possibly make an initial payment, U , and a series of quarterly

payments. Let S denote the CDS spread. The protection buyer promises to make payments S� each

quarter, conditional on no default by the reference obligor, where � is the time between payment

dates. If a credit event occurs, the protection buyer receives a payment from the protection seller

and the contract terminates. The present value of the payments by the protection buyer is

PBt = U + Et

"
S�

hX
j=1

1(�>t+j)A(t+ j)

#
: (2.7)

where A(t+ j) is the riskless discount rate exp(�rt � :::� rt+j�1). In Appendix B we show that

Et[1(�>t+j)A(t+ j)] = exp(Fj +G
0
jXt +X

0
tHjXt); (2.8)

where the coe¢ cients Fj, Gj and Hj are derived recursively.

The protection seller will make a payment of (1�R), where R is the recovery rate, if a default
event occurs. We assume that if a default event occurs during the interval (t+ j�1; t+ j], payment
by the protection seller is made at the end of the interval. The present value of the promised

payment by the protection seller is

PSt = Et

"
(1�R)

hX
j=1

1(t+j�1<��t+j)A(t+ j)

#
:

We assume that the recovery rate is known. We can relax this assumption, though with insu¢ cient

data, it is di¢ cult to estimate the additional parameters. We can write the above expression in the

form

PSt = (1�R)
 
Et

"
hX
j=1

(1(�>t+j�1)A(t+ j)

#
� Et

"
hX
j=1

1(�>t+j)A(t+ j)

#!
: (2.9)

The second term of the right side of the above expression is given by expression (2.8). To evaluate
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the �rst term, consider

Et
�
1(�>t+j�1)A(t+ j)

�
: (2.10)

It is shown in Appendix B that this also can be written in the form

Et
�
1(�>t+j�1)A(t+ j)

�
= exp

�
Mj +N

0
jXt +X

0
tPjXt

�
; (2.11)

where the coe¢ cients Mj, Nj and Pj are derived recursively.

The spread of the CDS is set such that

PBt = PSt: (2.12)

In what follows the price of default protection refers to the spread S.8

3 A Case Study: The Gap, Inc.

To illustrate the main �ndings and implications of our study, we begin with a case study of a

single �rm: The Gap, Inc., a company whose fortunes have varied signi�cantly. Table 1, Panel A,

reports descriptive statistics. The average CDS spread over the 2002 to 2008 period is 156 basis

points for one-year protection, 176 basis points for three-year protection, and 197 basis points for

�ve-year protection. Figure 1 plots the market CDS spread for the �ve-year tenor between 2002 and

2008, together with model spreads, the company�s stock price, the �rm�s option-implied volatility,

leverage, and distance-to-default. In the earlier part of our sample, the price of �ve-year default

protection �uctuated around 600 basis points, and Standard & Poors assigned the company a BB+

credit rating on their long term debt. At the time, distance-to-default was at its lowest and leverage

at its highest during our sample period.

During 2002, the company, faced with sti¤ening competition, repeatedly reported losses. A

failed change in marketing strategy led to the demise of CEO Michael Drexler. As of mid 2002,

the company changed strategy, a change in leadership took place, and the �rm�s outlook started to

improve. As a result, the stock rallied and the price of �ve-year protection was steadily lowered, and

eventually bottomed out at approximately 100 basis points. Implied volatility decreased steadily

from approximately 60% to about 20%. The �rm was upgraded to investment grade in early 2005

and maintained this rating until late 2006, when it was downgraded back to BB+. However, this

downgrade did not cause the CDS spread to increase to its earlier highs. Interestingly, option-

8Recently, changes in the CDS market make the up-front fee U the pricing parameter. However, this does not
a¤ect our sample.
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implied volatility and leverage also remained at lower levels, and the distance to default did not

signi�cantly decrease until the end of the sample.

Importantly, a visual inspection of Figure 1 suggests strong univariate relationships between the

candidate covariates and the CDS spread. While it is of course important to con�rm these impres-

sions using other approaches that are both more formal and multivariate in nature, all suggested

relationships are consistent with available theory: higher �rm-implied volatility and higher leverage

are associated with higher spreads, and higher distance-to-default is associated with lower spreads.

Higher stock prices are associated with lower spreads, which can also be obtained as an implication

of structural models, or alternatively can be understood because of the robust negative correlation

between stock returns and �rm volatility. Because of space constraints, it is of course not possible

to include �gures for all 83 �rms used in the empirical analysis, but similarly strong associations

between spreads and candidate covariates are apparent from visual inspection of the data for almost

all �rms.

The two top panels of Figure 1 illustrate the performance of a parsimonious linear regression

and the no-arbitrage model. In both cases, we limit the covariates to two term structure factors,

the VIX, and distance-to-default, a metric that combines leverage and operating risk. The data

are discussed in more detail in Section 4.1. To save space, we only provide �gures for the �ve-year

tenor. Table 1, Panel B provides measures of �t for the one-year, three-year, and �ve-year tenors.

The R-square of the linear regression is high for all three tenors, around 85%, but because the CDS

spreads and some of the covariates are highly autocorrelated, the interpretation of this R-square is

subject to problems, as discussed by Granger and Newbold (1974).

We estimate the no-arbitrage model using all three tenors jointly to impose consistency in

pricing, and the �tting exercise is therefore more demanding. Despite this, the RMSEs for the

no-arbitrage model are about 35% lower on average compared to the regression, at about 53 basis

points averaged across the tenors. Figure 1 indicates that both the no-arbitrage and regression

models provide an adequate �t. Note in this respect that, following the argument of Granger and

Newbold (1974), while the high R-square for the regression may indicate a spurious relationship,

the relationship may of course also be genuine. Importantly, visual inspection of the spreads and

the covariates in Figure 1 clearly indicates that the time series under study are not characterized

by stochastic trends, which is the case Granger and Newbold (1974) had in mind because of the

properties of time series such as aggregate consumption or aggregate GDP. Instead, the CDS spread

and the �rm implied volatility in Figure 1 con�rm our intuition that they should be stationary time

series. We will discuss these observations in more detail below.

Figure 1 also clearly indicates that the no-arbitrage model performs well in pricing the CDS.

The good �t obtains in spite of the discipline imposed by the no-arbitrage approach, which imposes
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consistency in pricing across maturities and avoids negative spreads. Note that after the turnaround

in the company�s fortunes, and the reduction in its CDS spread to lower levels as of 2004, we observe

several episodes of negative predicted spreads for the linear regressions. The most notable excursion

into negative territory occurs in mid 2005, when the �ve-year spread approaches minus 100 basis

points. The pattern is even more dramatic for the one-year and three-year tenors. The one-year

model spread for the linear regression approaches minus 200 basis points. We also observe negative

predicted spreads for one-year tenors in late 2006, and across tenors in 2007.

Negative spreads, in particular of such magnitudes, constitute arbitrage opportunities, and ren-

der the model useless for practical purposes during such episodes. The no-arbitrage credit risk model

presented in this paper rules out such scenarios by design, without restricting model coe¢ cients.

Figure 1 also indicates that this model is able to match the low levels and low spread volatility

from 2004 onwards quite easily, whereas the �tted spreads from linear regressions are too volatile

and negative.

We conclude that in the case of The Gap, Inc., the greater economic consistency of the no-

arbitrage model does not come at the cost of increased �tting errors, despite the fact that the

�tting exercise is more demanding.

In Section 5 we report results for all 83 �rms in our sample. First we discuss our data and

estimation methodology.

4 Data and Estimation Method

4.1 Data

Our sample period is from January 1, 2002 to March 7, 2008. Reliable data on the CDX index are

available starting in October 2004. CDS and CDX spreads are obtained from Markit. We collect

data for all single name CDS contracts that were part of the DJ.CDX.NA.IG (CDX henceforth)

index at any time between October 2004 and March 2008. To have su¢ ciently long time series,

we require that the obligors have CDS data that starts in 2002 and is available until March 2008,

and that data on observable covariates, as discussed below, are available during this period. With

these requirements, we obtain a sample of 83 �rms. We obtain CDS spreads for 1, 3, and 5 year

maturities for all �rms. The top panel of Figure 2 presents the average spread across all 83 �rms for

the 5-year tenor. The variation over the sample for the 1-year and 3-year tenors is similar, though

we do not include these �gures to save space.

To estimate the risk-free term structure model, we use daily Libor rates with 6 month maturity

and interest swap rates with maturities of 1, 2, 3, 4, 5, 7, and 10 years. The Libor and interest

10



swap rates are obtained from Bloomberg.

In addition to the CDS and Libor data, we require the following �rm-speci�c and economy-wide

data: �rm-speci�c option implied volatility, total liabilities, the market value of equity, liquidity,

the implied volatility of the index, and the one-year trailing S&P500 return. We obtain the data on

30-day at-the-money put option implied volatility from Optionmetrics. We obtain data on equity

prices, the number of shares outstanding, and the daily stock return for each �rm, from CRSP. For

total liabilities, we use Compustat variable LTQ. Since balance sheet information is reported at a
quarterly frequency, we transform it into daily data through linear interpolation. We de�ne leverage

as the ratio of total liabilities and the sum of the market value of equity and total liabilities. We

use the number of contributors for the 5-year maturity spread as our measure of CDS liquidity. We

obtain the S&P500 return from CRSP, and the daily VIX from Optionmetrics. The bottom two

panels of Figure 2 depict the one-year trailing S&P500 return and the VIX. Over the sample period,

the S&P500 return is 4.5% on average with a standard deviation of 14.6%, and the VIX is 18.21%

on average with a standard deviation of 6.83%.

Panel A of Table 2 provides summary statistics for all 83 �rms in the data set.9 The table includes

the averages and standard deviations of spreads for the 5-year tenor, as well as for leverage, option

implied volatility, distance-to-default, and the CDS liquidity measure. The table also includes the

�rms�average rating over the sample period.10 Most �rms in the sample are rated A or BBB, which

is not surprising given the composition of the CDX index. Despite the relative homogeneity of the

�rms in the sample in terms of ratings, the table indicates substantial di¤erences in the average

spread levels, as well as in the descriptive statistics for the observable covariates. The median 5-year

CDS spread is just over 60 basis points, with a standard deviation of 34 basis points. Distance-

to-default ranges between 2.3 and 14.6, with a median of 9. The smallest distance-to-default is for

Visteon which has the largest average spread in our sample, while the largest distance-to-default

is for Home Depot, which has a fairly low average spread. Firms with average spread higher than

100 basis points have an average distance to default of 7.2, while �rms with average spread lower

than 100 basis points have an average distance to default of 9.6, suggesting the expected negative

relationship between distance to default and spreads. The liquidity variable reported in the table

averages 11 with a minimum time series average of just less than 7, and a maximum of 14. The

�rms in our sample have an average leverage that ranges from a minimum of 17% to a maximum of

87%, and average option-implied volatility ranges from a minimum of 19% to a maximum of 56%.

9Panel B of Table 2 is discussed in Section 5.
10At each point in time, we assign a numerical code to the �rm�s rating. Subsequently we average over time and

map the average back to a rating category.
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4.2 Estimation Method

All estimates of the no-arbitrage CDS model are obtained using nonlinear least squares. The pric-

ing model with observable covariates described in Section 2 provides a closed form solution, up to

a recursion. Estimation is relatively straightforward compared to a model with latent covariates,

because we proceed under the pricing probability measure, and the residuals can simply be ob-

tained using the pricing formulas as a function of the observable data, which allows straightforward

construction of the sum of squares.

In our implementation, we use stochastic term structure factors as covariates, and their esti-

mation is somewhat more complex, because the latent state variables have to be �ltered from the

data. The Kalman �lter o¤ers a convenient framework for the estimation of these models. For our

application, the transition function is Gaussian, but the measurement function is highly nonlinear.

In most term structure and credit risk applications the nonlinearity in the measurement equation

is addressed by the use of the extended Kalman �lter, which approximates the nonlinearity us-

ing a Taylor expansion.11 We instead use the unscented Kalman �lter, which directly allows for

non-linearities. We use a particular implementation of the unscented Kalman �lter, the square-

root unscented Kalman �lter proposed by Van der Merwe and Wan (2001), which we found to be

numerically stable and computationally feasible.12

5 Empirical Results

In this section, we estimate the no-arbitrage model for all 83 �rms in our sample using a parsimonious

speci�cation, with four covariates: two covariates extracted from the riskless term structure, the

�rm�s distance-to-default computed using option-implied volatility, and the VIX. These covariates

are suggested by a simple structural model, as in Merton (1974), and the estimated signs on the

covariates are therefore easily interpretable from a theoretical perspective. We report on other

speci�cations in Section 6.1 below.

It can be seen from equation (2.6) that the dynamic of each covariate contains three parameters,

the drift �, the persistence �, and the standard deviation �. The estimation proceeds in two steps.

In the �rst step we estimate the dynamics of the macro factors. This estimation only has to be

performed once. This �rst step, in turn, consists of two parts. First, we estimate the six parameters

describing the dynamics of the two term structure factors from the term structure of interest rate

11See Chen and Scott (1995), Duan and Simonato (1999), and Du¤ee (1999) for applications of the extended
Kalman �lter to term structure models.
12See Chen, Cheng, Fabozzi, and Liu (2008) for an application of the unscented Kalman �lter to credit risk models

with latent factors. See Carr and Wu (2007) and Bakshi, Carr, and Wu (2008) for applications to equity options.
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swaps. To estimate the three parameters characterizing the dynamics of the VIX, we use the no-

arbitrage model to determine the spread on the CDX index.13 For the index, the no-arbitrage model

has three covariates: the two term structure factors and the VIX.

In the second step, we estimate for each �rm the parameters characterizing the dynamics of the

distance-to-default process, as well as the loadings on all four factors.

5.1 The Risk-Free Term Structure and Macro Factors

Table 3 reports on the estimation of the macro covariates. Panels A and B examine the risk-free

term structure and Panel C the VIX. Panel A reports on the dynamics of the risk free term structure

factors. The risk free term structure is captured using the two latent factors. Panel B reports the

pricing errors as well as the measurement error standard deviation. The pricing errors for the swap

curve are quite small, ranging from about nine basis points for the 6-month Libor to �ve basis

points for the 5-year swap rate. These results seem to be in line with other studies.14 Estimated

parameters are reasonable. Both factors are very persistent.

Panel C reports on the dynamics of the third macro factor, the CBOE VIX implied volatility

index. These dynamics are estimated using the CDX spreads. The purpose of the estimation

exercise that uses the CDX index is to uncover the risk-neutral dynamics of the VIX. The process

is very persistent. The implied unconditional average of the VIX is 38.3%. Note that these are

risk-neutral estimates, and that the estimate for the VIX will therefore exceed physical market

volatility. The �t is very good, and we do not report the pricing errors to save space.

5.2 Firm-by-Firm Results

We now turn to a discussion of our �ndings for all 83 �rms, using the parsimonious covariate

speci�cation with four observable covariates. The top panel of Figure 2 provides a summary of the

time series behavior of the average CDS spread across �rms for the �ve-year tenor. The average

spread is approximately 100 basis points in 2002, and reaches a peak of just under 200 basis points

13Because the CDX index is not available over the entire sample period, we approximate it by averaging the spreads
of the 83 �rms in our sample. For the 2004-2008 time period, when the CDX is available, the correlation of the
resulting time series with the CDX is over 99%.
14Jagannathan, Kaplin, and Sun (2003) estimate a multi-factor CIR model using the term structure of Libor-swap

rates. Using a two-factor CIR model, they �nd mean absolute pricing errors between 2.2 and 7.5 basis points for
swap rates with maturities between 3 and 7 years, while the pricing error for the three-month maturity Libor rate
is 31 basis points. Li and Zhao (2006) estimate a quadratic term structure model using zero coupon Libor rates.
They report RMSEs ranging from 0.5 to 7 basis points. Du¢ e and Singleton (1997) also estimate the term structure
model using Libor-swap rates and �nd similarly low pricing errors. Chen, Cheng, Fabozzi, and Liu (2008) report
RMSEs ranging from 13 to 23 basis points.
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later that year. In the middle of the sample, from 2004 to early 2007, spreads are stable and low,

although the term structure is steeper, with spreads ranging from 10 to 20 basis points at the short

end, and reaching 50 to 60 basis points for the �ve-year tenor. Later in 2007, as the credit crisis

starts developing, spread volatility increases and spreads again reach levels observed in 2002.

Figure 2 also reports on the VIX, the option-implied index volatility, as well as the one-year

trailing return on the S&P 500, which we use in Section 6.1. Our sample begins with a period of

high volatility and negative returns. As of early 2003, volatility begins to stabilize and the stock

market rallies. The rest of our sample consists of a long period of fairly stable index returns and

volatility, but in mid to late 2007, volatility increases and returns decrease in the run-up to the

�nancial crisis.

Importantly, Figure 2 con�rms the observation discussed in Section 3 that there seems to be a

strong association between candidate covariates and CDS spreads. The positive correlation between

the VIX in the middle panel and the average spread in the top panel is quite apparent. Similarly,

Figure 2 suggests a negative correlation between the S&P return and the average spread.

Panel B of Table 2 reports estimation results on a �rm-by-�rm basis for the no-arbitrage model

described in Section 2. In order to conserve space, we only report on the model�s �rm-by-�rm �t

for the �ve-year tenor. The qualitative conclusions for the one- and three-year tenors are similar

and we will present some summary statistics later in Table 6. We use the estimates for the macro

factors from Panels A-C of Table 3 and the estimated dynamics of the only �rm-speci�c covariate,

the distance-to-default process. Panel D of Table 3 reports on this process, which is found to be

very persistent for nearly all �rms. We also report goodness of �t measures for the linear regression

St =  + �rX
r
t + �dX

d
t + "t; (5.1)

where St is the CDS spread at time t, Xr
t is the vector of term-structure factors at time t, which for

this speci�cation consists of the two term-structure factors, and Xd
t is the vector of other factors at

time t, which for this speci�cation consists of distance-to-default and the VIX.

Table 2, Panel B indicates that for the �ve-year tenor, the level regressions yield on average

high R-squares at 63.6%, ranging from 20% to 92% for individual �rms. Once again, following

Granger and Newbold (1974), these high R-squares may indicate a spurious relationship. However,

the RMSEs con�rm that the �t of the regressions is adequate. The no-arbitrage model outperforms

the linear regression on average, yielding a 10% lower mean RMSE of 27.1 basis points. For the

one-year and three-year tenors, the improvement in �t o¤ered by the no-arbitrage model is even

larger.

In summary, the no-arbitrage model provides a good �t, and performs well compared to the
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regression approach. This is notable, because the model�s enhanced economic consistency biases it

towards a poorer �t. Note however that this improvement in �t is not the focus of our study; instead,

the regressions simply serve as a benchmark to demonstrate that the no-arbitrage model performs

well in terms of �t. What is more important is that two important methodological advantages are

imposed by the no-arbitrage setup. First, the no-arbitrage approach rules out negative spreads.

Second, for the regression approach, there is no obvious way to impose consistency in the pricing

across tenors, and regressions are implemented one tenor at a time, which also provides arbitrage

opportunities. The methodological advantages of the no-arbitrage approach come at no cost in �t.

The no-arbitrage model therefore provides a useful framework to investigate the impact of ob-

servable covariates on CDS spreads. However, before we can further explore estimates of this im-

pact, we need to discuss in more detail the implications of statistical assumptions that are critically

important in the credit risk literature.

5.3 Statistical Assumptions and Model Fit

5.3.1 Levels and Di¤erence Regressions for Analyzing Credit Spreads

The speci�cation of the no-arbitrage model in Section 2 de�nes the intensity - see (2.4) - in terms

of the levels of the covariates. It therefore seems sensible to compare its empirical performance

with the levels regression (5.1), see Table 2, Panel B. However, the statistical speci�cation of linear

regression models of credit spreads, which dates back to at least as far as Fisher (1959), has been

the subject of some debate. Collin-Dufresne, Goldstein, and Martin (2001), using monthly data on

corporate bonds and regressions using di¤erences rather than levels, argue that covariates suggested

by economic theory have limited explanatory power. Other credit risk studies use levels regressions,

and some authors report results using both speci�cations.15

The choice between levels and di¤erence regressions for credit spread analysis is a complex

one, and no consensus has emerged in the literature. From a statistical perspective, di¤erencing

is preferred if the dependent variable and/or regressors are characterized by stochastic trends and

integrated, because regression analysis using integrated or nearly integrated variables may yield

spurious regression results, in that R-squares and t-statistics may be misleading. A �rst important

remark in this respect is that stochastic trends may not be the most obvious representation of

the variables used in (5.1). While bond spreads, CDS spreads, and covariates such as volatility

are typically highly auto-correlated, economic intuition suggests that they are stationary, in the

15Recent work on bond spreads relying on levels regressions includes Campbell and Taksler (2003) and Cremers,
Driessen, Maenhout, and Weinbaum (2008). Avramov, Jostova, and Philipov (2007) report on di¤erence regressions
for bond spreads. Blanco, Brennan, and Marsh (2005) use di¤erence regressions on CDS spreads, while Zhang, Zhou,
and Zhu (2009) and Ericsson, Jacobs, and Oviedo (2009) report on both levels and di¤erence regressions for CDSs.
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sense that they are not inherently characterized by a positive drift like stock prices or aggregate

consumption. This intuition is con�rmed by the time series of aggregate spreads in Figure 2. The

time series of spreads for The Gap, Inc. in Figure 1, and the graphs for other �rms in the sample

(not reported) con�rm this conclusion. Spreads are not trending up or down through time in our

sample period.

One may argue that di¤erencing ought to be preferred regardless of statistical considerations,

because if a theory holds in levels, it should also hold in di¤erences. However, this implicitly

assumes that di¤erencing is costless; this reasoning is incorrect. There is an important potential

cost to di¤erencing, because the di¤erence regression may be less statistically e¢ cient than the levels

regression, and this can a¤ect the estimated magnitudes of the impact of the covariates. On this

issue, see for instance Harvey (1980), Zellner (1979), Gospodinov (2009), and especially Maeshiro

and Vali (1988). Moreover, in many realistic scenarios, measurement error may further lower the

signal to noise ratio in a di¤erence regression compared to a levels regression.

5.3.2 Interpreting Measures of Fit

In summary, there are good arguments in favor of both approaches, and the choice is not obvious.

We consider the implications of this choice for the speci�cation of no-arbitrage models of credit risk

with observable covariates, such as the one outlined in Section 2. Consider the di¤erence regression

�St = ! + �r�X
r
t + �d�X

d
t + �t: (5.2)

Panel A of Table 4 presents the average R-squares for the level and di¤erence regressions (5.1) and

(5.2) for all three maturities. The R-squares for levels are in the 63 to 69 percent range, while

for di¤erences the R-squares are dramatically lower, at around 1 to 2 percent. This evidence is

consistent with existing studies, in the sense that R-squares from levels regressions are consistently

higher than those from di¤erence regressions.16

Granger and Newbold�s (1974) warning regarding the R-squares of the levels regression is well

known. However, the low R-squares from the di¤erence speci�cation must also be interpreted

with caution: they may simply indicate that much of the spread is explained by lagged spreads.

Most importantly, a comparison between the R-squares of the levels and di¤erence regressions is

uninformative, even if the R-squares are free of problems in both cases.17 More generally, as argued

16Our R-squares for di¤erence regressions may seem rather low. Zhang, Zhou, and Zhu (2009) also report R-
squares between 1 and 5%. Collin-Dufresne, Goldstein, and Martin (2001) report higher R-squares for bond spread
di¤erences, and Blanco, Brennan, and Marsh (2005) and Ericsson, Jacobs, and Oviedo (2009) report higher R-squares
using CDS spread di¤erences. We comment on di¤erences with the existing literature in more detail in Section 6.4.
17It is well known that it may be problematic to compare models using R-squares. See for instance chapter 3 in
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by Harvey (1980), comparing the �t of levels and di¤erence regressions is di¢ cult. To appreciate the

inherent di¢ culties, consider instead the R-square from the regression of the spread St on the �tted

value Ŝt = St�1+!̂+�̂r�X
r
t +�̂d�X

d
t , where !̂, �̂r and �̂d indicate the estimates from the di¤erence

regression (5.2). The R-squares for this regression are upward of 98% across tenors, suggesting very

good �t. Alternatively, one can compare RMSEs for di¤erence and level speci�cations. Panel B

of Table 4 presents average RMSEs. For the level regressions, the average RMSE is between 29 to

31 basis points. For the di¤erence regressions, the RMSEs are between 4 to 6 basis points, again

suggesting that the di¤erence regressions perform well.

Measures of �t must thus be interpreted carefully, dependent on the statistical speci�cation,

and are hard to compare across speci�cations. From a �nance perspective, the economic impact of

covariates on spreads is even more important than model �t. As mentioned above, there is a trade-

o¤between the advantages and disadvantages of levels and di¤erence regression in this respect, with

levels regressions o¤ering advantages in assessing economic impact, as estimates are consistent, but

subject to disadvantages when assessing model �t. For a level speci�cation, the coe¢ cients are

consistently and e¢ ciently estimated. The main potential disadvantage of a level speci�cation is

in the interpretation of the measures of �t, notably R-square, in the presence of autocorrelation.

Di¤erence regressions also yield consistent estimates, but as explained in Maeshiro and Vali (1988),

the estimates are ine¢ cient. This important point is often ignored, implicitly assuming that the

problem is minor, but Maeshiro and Vali (1988) use a Monte Carlo experiment to demonstrate

that the loss in statistical e¢ ciency can be very large. It therefore seems prudent to estimate both

levels and di¤erence speci�cations, and to carefully analyze di¤erences in the estimated impact of

covariates on spreads.

5.3.3 Cochrane-Orcutt Regressions

An alternative approach to deal with highly auto-correlated variables is a Cochrane-Orcutt re-

gression, which e¤ectively imposes an AR(1) structure on the error term.18 Consider the levels

regression in (5.1), and subtract the lagged spread pre-multiplied by �. This gives us

St � �St�1 = (1� �) + �r(Xr
t � �Xr

t�1) + �d(X
d
t � �Xd

t�1) + ("t � �"t�1): (5.3)

The di¤erence regression can be thought of as the special case of � = 1, and the levels regression

obtains in case � = 0. Table 4 indicates that the results for (5.3) are very similar to the results for

Davidson and MacKinnon (2004).
18We have been unable to �nd any extant studies on the determinants of bond or CDS spreads that use the

Cochrane-Orcutt methodology.
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the di¤erence regression (5.2), re�ecting the very high auto-correlation in the daily CDS spreads.

The no-arbitrage results in Table 2 are obtained using nonlinear least squares, where the error

term is de�ned to be white noise. To incorporate the statistical assumptions underlying (5.2) and

(5.3) into a no-arbitrage framework, we also implement nonlinear least squares assuming that the

error term is given by an AR(1) process, similarly to the speci�cation (5.3). The results from this

approach are labeled as NA-AR(1). Table 4, Panel B, indicates that the RMSEs for the NA-AR(1)

model are very similar to the RMSEs for the di¤erence and Cochrane-Orcutt regressions, indicating

that the no-arbitrage approach is very �exible, and can accommodate alternative assumptions

regarding the error distribution and the autocorrelation in spreads.

5.4 Observable Covariates and Credit Spreads

We now turn to a detailed study of the quantitative impact of covariates on CDS spreads, using

di¤erent statistical assumptions. Note that the loadings � in equation (2.4) are not directly inter-

pretable because the default intensity is quadratic in the state variables. We therefore focus on the

numerical derivatives or �deltas� of the credit spreads with respect to changes in the covariates,

which we refer to as sensitivities. These sensitivities also make it easier to compare the results of

the no-arbitrage speci�cation and the regression approach, because in the no-arbitrage speci�cation

(2.4) it is the default intensity that is speci�ed as a function of the covariates, whereas for the

regression (5.1) it is the credit spread.

Figure 3 depicts the cross-sectional distribution of the sensitivities of default swap spreads with

respect to the VIX and the �rm speci�c distance-to-default factor. Table 5 reports cross-sectional

means and standard deviations for sensitivities. Panel A of Table 6 reports on the statistical

signi�cance of each of the covariates.

We expect the VIX to have a positive e¤ect on the spread, and distance-to-default to have a

negative impact. These predictions hold not only in the Merton (1974) model, but also in all more

recent models. It is less clear what to expect from the term structure factors.19 The evidence for

the term structure factors is indeed quite mixed, as can be seen from the standard deviations in

Panels A and B of Table 5.

Results for the market wide volatility VIX and distance-to-default con�rm the theory. For the

no-arbitrage model, Figure 3 indicates that the sensitivities to the VIX factor have the expected

positive sign for 96% of all �rms. Panel C of Table 5 indicates that on average across all �rms

19Empirically, the link between the level of the risk-free term structure and credit spreads tends to be negative (see
e.g. Du¤ee (1998) and Collin-Dufresne, Goldstein, and Martin (2001)). This empirical �nding is often motivated
by referring.to the Merton (1974) model, but this is based on a comparative static where asset value is taken to be
exogenous.
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in the no-arbitrage model, if the VIX increases by 1%, the credit spread increases by 1.49 basis

points. When using linear regressions, the estimated e¤ect is larger on average, at 3.03 basis points,

and Figure 3 indicates that we obtain a positive sign for 93% of �rms.20 For distance-to-default,

the sensitivities have the a priori expected negative sign in 98% of the cases for both the linear

regression and the no-arbitrage model. For the no-arbitrage model, credit spreads decrease by 8.50

basis points on average when distance-to-default increases by one unit. Results obtained using

linear regression are on average very similar. Panel A of Table 6 indicates that these results are

statistically signi�cant for most �rms.

Figure 3 clearly indicate the economic importance of statistical assumptions. In the models

with auto-correlated errors, we again obtain the a priori expected positive sign for the VIX and

negative sign for the distance-to-default in the majority of cases, but less often than in the case of

the levels regression and the no-arbitrage model with white noise errors. Moreover, the magnitude

of the estimated coe¢ cients for the Cochrane-Orcutt and no-arbitrage-AR(1) cases is very di¤erent

from that of the levels and no-arbitrage estimates. Panel C of Table 5 indicates that on average,

a 1% increase in the VIX increases the credit spread by 0.15 basis points for the Cochrane-Orcutt

regressions, compared to 3.03 basis points for the case of the levels regressions. For distance-to-

default, an increase of one standard deviation leads to a decrease of -1.94 basis points when using

Cochrane-Orcutt regressions, versus -8.16 basis points for the levels regressions. However, Table 6

indicates that this comparison has to be interpreted cautiously: in contrast to the results for the

no-arbitrage model and levels regressions, estimates in models with auto-correlated errors are less

often statistically signi�cant. Note that the t-statistics in Table 6 are corrected for serial correlation

in the residuals.

How similar are these estimates to existing results? The literature does not yet contain a wealth

of evidence on the impact of macroeconomic and �rm-speci�c variables on CDS spreads, even using

simple regressions. For the NA and levels models, our estimates of the impact of the VIX obtained

are roughly similar to the �ndings of Cao, Yu, and Zhong (2010), who report that a 1% increase

in �rm implied volatility increases CDS spreads by 2 to 3 basis points, and Ericsson, Jacobs, and

Oviedo (2009), who report that a 1% increase in volatility raises the CDS premium on average by

0.8 to 1.5 basis points. Zhang, Zhou, and Zhu (2009) report a larger impact of �rm volatility on

CDS spreads.

In summary, the no-arbitrage approach is attractive: it avoids the pitfalls of the regression ap-

proach, while yielding economically plausible results, and it can accommodate a variety of statistical

assumptions used in the linear regression literature. We also document that in linear regressions,

20To address serial correlation in the residuals, standard errors are corrected using a Newey-West correction with
seven lags.
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the statistical assumptions have a very strong impact on the economic magnitude of the loadings,

which to the best of our knowledge has not yet been discussed in the literature.

6 Robustness

We now discuss the robustness of the empirical results in Section 5. We �rst discuss alternative

covariate speci�cations and quadratic covariates. Subsequently we comment on the estimation of the

risk-free term structure, discuss the importance of data frequency, and discuss overall implications.

6.1 Alternative Covariates Speci�cations

The analysis of alternative covariate speci�cations is of interest for several reasons. First, it is

important to verify that the good performance of the no-arbitrage model in Section 5 extends

to other speci�cations of the covariates. Second, the question arises by how much the �t can be

improved by including additional covariates. Third, it is of interest to measure the economic impact

of alternative covariates on spreads.

Because estimating the no-arbitrage model for many permutations of covariates is computation-

ally costly, we proceeded as follows. We conducted an extensive speci�cation analysis of regres-

sion models to �nd the covariates that best explain the CDS spreads, using the �rm-speci�c and

economy-wide variables described in Section 4.1. Analysis of a few random �rms showed that the

relative ranking of models is similar for the no-arbitrage models and linear regressions. Based on

the results of this speci�cation search, we subsequently estimated the no-arbitrage model for all 83

�rms for a small number of alternative speci�cations of the covariates, and compared the results to

the parsimonious speci�cation in Section 5.

Here we summarize our main conclusions regarding the speci�cation of no-arbitrage and re-

gression models. First, the overall evidence is encouraging for the no-arbitrage setup, and for the

relevance of observable covariates in explaining credit spreads more in general. Using more elabo-

rate models, most of the coe¢ cients are estimated with economically plausible sensitivities, as in

the case of the model in Section 5. Second, while it is possible to improve on the �t of the parsi-

monious model, the improvement in �t is modest, and the parsimonious model more often yields

the theoretically expected sign. This is interesting from a theoretical perspective, as the volatility,

interest rate, and distance-to-default factors in the parsimonious model are directly suggested by

structural models.

We now brie�y discuss the results of a second covariate speci�cation to illustrate these points.

Three of the covariates are the same as in the parsimonious covariate speci�cation studied in Section
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5 : the same two stochastic term structure factors and the VIX. The other covariates are the one-

year trailing return on the S&P500, the 30-day option implied volatility, �rm leverage, and the

liquidity measure. The additional covariates included in this speci�cation are intuitively appealing,

and have been extensively analyzed in the existing literature. On average, across �rms, each of

these variables, except for the liquidity variable, contributes signi�cantly to explanatory power.21

The RMSE is approximately 25 basis points on average across the three tenors, which is lower than

the RMSE for the parsimonious speci�cation in Table 4; however it is clear that the improvement

in �t from three extra covariates compared to the results in Section 5 is modest.

Figure 4 reports how often the observable covariates are estimated with the a priori expected

sign. For the S&P500, we obtain the expected negative impact on credit spreads in 92% of the cases

for the levels regression, and in 89% of the cases for the no-arbitrage model. The VIX yields the

expected positive sensitivity in the majority of cases, but less often so than for the parsimonious

covariate speci�cation in Figure 3. Firm-implied volatility is estimated with the expected positive

sign in 98% of the cases for the levels regression, and in 93% of the cases for the no-arbitrage model.

Estimated sensitivities are therefore intuitively plausible. They are also consistent with existing

results. The �rm-implied volatility yields estimates in a similar range found by Cao, Yu, and Zhong

(2010) and Ericsson, Jacobs, and Oviedo (2009). Further, Ericsson, Jacobs, and Oviedo (2009) �nd

that a 1% increase in the leverage ratio increases the CDS premium by 5-7 basis points, whereas

Cao, Yu, and Zhong (2010) report increases of approximately 3 basis points. Our estimate obtained

using the levels regressions is on average 2.7 basis points, but the no-arbitrage estimates are smaller.

An increase of 1% in the S&P500 leads to a decrease in the spread of at most half a basis point.

6.2 Quadratic Regression Speci�cations

It could be argued that the comparison of our no-arbitrage model with regression speci�cations

such as (5.1) is �awed, because the regression model is linear in the covariates, whereas the no-

arbitrage model is quadratic. It is important to note in this respect that our objective is not to run

a horse race between no-arbitrage and regression models, which are fundamentally di¤erent tools

with di¤erent uses. The �t of the regression models is merely provided as a benchmark to verify that

the �t of the no-arbitrage models is adequate. Our emphasis is on the methodological advantages

of our approach, and we provide the �t of regression models to indicate that these methodological

21The liquidity variable performed poorly in general. Note that this is perhaps due to sample selection, because
our sample exclusively consists of investment grade �rms. Also, Bongaerts, de Jong and Driessen (2009) demonstrate
that the impact of liquidity on CDS spreads is harder to sign than in the case of corporate bonds. Finally, a
more detailed analysis of alternative liquidity measures, as in Tang and Yan (2007) for example, might yield more
conclusive results.
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advantages do not come at the cost of empirical �t.

Nevertheless, it is useful to compare the no-arbitrage model with a regression that includes

quadratic terms of the covariates. We investigate this for the parsimonious model in Section 5.

As expected, including quadratic terms improves the performance of the regression model, as the

analysis is in-sample. On average, the �t for the regression model is slightly better than that of the

no-arbitrage model when including quadratic regressors. However, �tted spreads are again negative

on many occasions. It is therefore possible that the inclusion of quadratic terms in a regression

model may harm the model in an out-of-sample exercise, but such an exercise is beyond the scope

of this paper.

Alternatively, negative spreads can be avoided in a regression context by specifying

St = (%+ �rX
r
t + �dX

d
t )
2 + "t; (6.1)

which can be estimated by Nonlinear Least Squares. We estimated this speci�cation for all 83 �rms,

and the resulting �t is very similar to that of our no-arbitrage model, but of course this speci�cation

still has the disadvantage that the no-arbitrage restrictions are not imposed across tenors.

In summary, we con�rm that the no-arbitrage model allows us to impose no-arbitrage and

consistency across tenors, and this methodological advantage comes at no cost in terms of empirical

�t.

6.3 Observable Term Structure Factors

We have reported on results for two speci�cations of the covariates: a parsimonious one in Section

5.2, and a richer one in Section 6.1. Both speci�cations use two stochastic term structure factors,

as reported in Table 3. It is preferable to use stochastic term structure factors in the context of no-

arbitrage models, but it is of interest to verify whether our results are robust to using deterministic

term structure factors, especially because several existing studies have used the level and slope of

the term structure in linear regressions.

We therefore re-estimated the levels regressions using two term structure factors: the level of

the term structure, represented by the ten-year yield, and the slope, represented by the di¤erence

of the ten-year and three-month yields. For the no-arbitrage models the intensity function includes

the same two factors. The cash �ow are discounted using the extant term structure. The resulting

estimates are very similar to the results for the stochastic term structure; they are therefore not

reported but available from the authors on request. The �t of the resulting model is very similar

to the �t reported in Table 4, and the histograms for the sensitivities of the VIX and distance-to-

default are similar to those in Figure 3. The signs of the estimated sensitivities of the spreads with
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respect to the level and slope of the term structure vary considerably, consistent with the evidence

for the stochastic term structure factors in Table 5. These �ndings are not necessarily surprising, as

the correlation of the level with the �rst stochastic term structure factor is 90%, and the correlation

of the slope with the second stochastic term structure factor is -93%.

6.4 Di¤erence Frequency

In Section 5.3, we report on the impact of statistical assumptions on model �t and estimated

covariate sensitivities. We now study this question in more detail by investigating regressions at

di¤erent data frequencies.

Table 4 indicates that for our sample, the R-squares of the di¤erence regressions and Cochrane-

Orcutt regressions are very small, around 2%. This may seem somewhat surprising in light of

the �ndings in the existing literature. While the di¤erence regressions in Zhang, Zhou and Zhu
(2009) also yield low R-squares in the 1 to 5 percent range, Ericsson, Jacobs and Oviedo (2009) and

Blanco, Brennan, and Marsh (2005) report higher R-squares in the 22 to 26 percent range using

CDS data. Moreover, Collin-Dufresne, Goldstein, and Martin (2001) and Avramov, Jostova, and

Philipov (2007) obtain much higher R-squares, in the 19 to 42 percent range, using bond spread

di¤erences.

We argue that these di¤erences are due to data frequency. We investigated the e¤ects of data fre-

quency by repeating our analysis for the parsimonious covariate speci�cation, using weekly, monthly,

and yearly data. For the weekly and monthly data, we simply use the data described in Section 4.1,

and sample weekly or monthly. Sampling yearly yields a sample that is too small for meaningful

analysis; we therefore use daily data and take one-year di¤erences.22

Our �rst objective is to investigate how data frequency impacts on measures of �t. Panels A

and B in Table 7 report measures of �t for the weekly data, Panels C and D report on the monthly

data, and Panels E and F on the yearly data. Table 7 shows that for the levels regressions, the

R-squares and the RMSEs are very similar to those in Table 4. However, the R-squares for the

weekly di¤erence regressions are much higher than those obtained for daily di¤erence regressions in

Table 4, and the R-squares for the monthly and yearly di¤erence regressions are even higher. The

reason is that if credit spreads are highly auto-correlated, autocorrelation decreases with lower data

frequency. Consequently, while today�s spreads are very reliable predictors for tomorrow�s spreads,

they are less useful predictors of next week�s or next month�s spreads. Therefore, daily spread

22Existing studies on credit spreads use weekly or monthly, but not yearly data. We use yearly data merely
to illustrate the e¤ects of data frequency for di¤erenced data. Taking one-year di¤erences yields overlapping data.
Results of the Cochrane-Orcutt and no-arbitrage model with autocorrelated errors are not insightful with overlapping
data, and therefore we do not report on all cases for the yearly data.
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di¤erences yield largely noise, but this is less the case when taking weekly or monthly di¤erences;

as a result, in the di¤erence regressions more is left unexplained when the sampling frequency is

lower, thereby providing a better opportunity for observable covariates to explain the data. This

intuition is con�rmed by the patterns in RMSEs and by the Cochrane-Orcutt regressions.

These observations explain the di¤erences between our results using daily di¤erences in Table 4

and some of the existing literature. The results for bonds in Collin-Dufresne, Goldstein, and Martin

(2001) and Avramov, Jostova, and Philipov (2007) are obtained using monthly data. Ericsson,

Jacobs and Oviedo (2009) and Blanco, Brennan, and Marsh (2005) use daily CDS data, but report

gaps in the data, e¤ectively yielding lower frequency data.

From an economic perspective, the most important question is if data frequency a¤ects the

estimated sensitivities of spreads with respect to covariates. Figure 5 presents results for monthly

data. The histograms and estimated magnitudes for the levels regressions are very similar to those

obtained using daily data in Figure 3. For the di¤erence and Cochrane-Orcutt regressions, the

percentage of a priori expected signs for the weekly, monthly, and yearly data is not too di¤erent from

the daily case in Figure 3, but the estimated magnitudes of the coe¢ cients are very di¤erent. We do

not report weekly and yearly results because of space constraints, but the lower the data frequency,

the more similar the estimation results from the di¤erence and Cochrane-Orcutt regressions are

to those of the levels regressions. For the yearly di¤erences (not reported), the distribution of

estimated magnitudes is very similar to that of the levels regressions.

Table 6 reports the percentage of statistically signi�cant loadings on the covariates for di¤erent

frequencies.23 We report on the �ve-year tenor; results for the other maturities are very similar.24

Lower data frequency leads to more statistically signi�cant results for the di¤erence and Cochrane-

Orcutt regressions. Statistical signi�cance for yearly di¤erences is similar to that obtained for levels

after correcting for serial correlation.

6.5 Implications

The robustness analyses con�rm the usefulness of the no-arbitrage model. We also uncover addi-

tional evidence regarding regression speci�cations. While this is not the main focus of our paper,

it is important to put these �ndings in perspective, because the regressions serve as a benchmark.

23To address serial correlation in the residuals, standard errors are corrected using a Newey-West correction. We
use four lags for weekly data, three for monthly data, and seven for daily data and yearly di¤erences. We tried
including additional lags for the yearly di¤erences because of the overlapping nature of the data, but this did not
a¤ect the results.
24Care must be exercised in interpreting the results, as the samples di¤er in size, which may a¤ect the t-statistics.

The daily and yearly samples are similar in size, but sample sizes for weekly and monthly regressions are much
smaller.
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These �ndings therefore indirectly indicate what we can learn from the no-arbitrage models with

respect to the economic impact of observable covariates.

Our original no-arbitrage model in Section 2 is speci�ed in levels. While we show that it is

possible to estimate no-arbitrage models that incorporate assumptions similar to the ones underlying

di¤erence regressions, our interpretation of the evidence is that for daily CDS data, the model

speci�ed in levels is most appropriate to learn about observable covariates and credit spreads.

We believe that estimated covariate sensitivities from daily di¤erence regressions are hard to

interpret, because these regressions are statistically ine¢ cient. The potential problem with the

levels regressions is that measures of �t such as R-squares may be biased, and that t-statistics

may be unreliable. However, t-statistics can be corrected for serial correlation, and RMSEs as well

as a visual inspection of model �t indicate that observable covariates are very helpful in �tting

credit spreads. Moreover, while credit default swap spreads are highly auto-correlated, they may

not be natural candidates for di¤erencing. Economic intuition suggests that these spreads are not

characterized by a stochastic trend, and plotting the spreads suggests that they are mean-reverting.

This interpretation is con�rmed by analyzing di¤erent data frequencies. For di¤erences based

on lower frequency data, the performance of observable covariates improves, and results are more

reliable. Note also that as data frequency decreases, the estimates of covariate sensitivities from

di¤erence regressions get closer to those of the levels regressions, which are more e¢ cient.

Both levels and di¤erence speci�cations have advantages and disadvantages, and the trade-o¤

needs to be carefully evaluated. Our results suggest that in the credit risk literature, the choice

of levels versus di¤erences should perhaps depend on the data frequency. For the monthly bond

data analyzed in Collin-Dufresne, Goldstein, and Martin (2001), di¤erencing the data may be

the best alternative, but for higher data frequencies levels regressions may be preferable. This is

critically important for the analysis of CDS data, because the short available sample periods make

it unavoidable to use daily data.

7 Concluding Remarks

We make four contributions. First, we introduce a no-arbitrage model with observable covariates,

which allows for a closed form solution for the value of CDSs. We specify the default intensity

as a quadratic function of the covariates, such that the intensity function is always positive. Our

approach enables us to study the e¤ects of observable covariates, while maintaining the discipline

of a no-arbitrage model, and imposing pricing consistency across maturities.

Our second contribution is empirical. We demonstrate that macroeconomic and �rm-speci�c

information can explain most of the variation in CDSs over time and across �rms. A parsimonious
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model with four covariates suggested by theory performs very well, and richer models with variables

commonly used in the literature do not add much explanatory power. The model provides sensible

results from an economic perspective: the impact of covariates such as volatility and distance-to-

default on CDSs is entirely consistent with economic intuition, as well as with the logic of structural

credit risk models such as Merton (1974). Moreover, we �nd that requiring our no-arbitrage model

to simultaneously �t CDS prices for di¤erent maturities does not come at the cost of empirical �t.

Third, when analyzing the determinants of credit risk, the economic interpretation of estimates

depends on the statistical assumptions, such as whether the dependent variable should be expressed

in levels or changes. We �nd that this choice involves clear trade-o¤s, and that it should partly

depend on the available data frequency. We argue that the analysis of credit spread levels may

be more valuable than previously thought, especially for daily CDS data. The intuition for this is

that although time series of credit default swap spreads and the observable covariates are highly

auto-correlated, they are mean-reverting and not characterized by long term trends.

Our fourth contribution is our overall conclusion: observable covariates are very useful to explain

credit spreads. This resolves an important disconnect in the existing literature, making valuation

results consistent with the evidence regarding default prediction.

In future research, it might prove interesting to investigate the modeling choice between levels

and di¤erences in more detail. Here we merely comment on this issue from the perspective of the

speci�cation of the no-arbitrage model, and an in-depth discussion is outside of the scope of this

paper. However, the existing literature that investigates the trade-o¤ involved in estimating levels

versus di¤erences is largely motivated by the analysis of economic variables that are presumably

characterized by (stochastic) trends, such as aggregate consumption or GDP. Existing Monte Carlo

evidence may therefore not be informative for highly autocorrelated but ostensibly mean-reverting

variables such as credit spreads and volatilities, as well as many other �nancial variables such as

interest rates. Careful evaluation of this trade-o¤, using Monte-Carlo experiments with parameters

relevant for credit risk applications, would seem to be a topic worthy of further study.

Appendix A: Risk-Free Bond Pricing

If � is a (n; 1) vector described by a multi-variate normal distribution � � N(0;�), � being non-

singular, then the Laplace transform of a quadratic form

Q = �0A�+ a0�+ d (7.1)
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is given by25

E[exp(tQ)] = exp(�1
2
ln(det(I � 2t � A)) + td+ 1

2
ta0(��1 � 2tA)�1at) (7.2)

We want to price a default free zero coupon bond

Et[exp(�rt � :::� rt+h�1)] � Lt;h

Let rt+j = (�0 + �
0Xr

t+j)
2 where Xr

t+j and � are (n; 1) vectors, j = 0; 1; :::; h � 1. We can re-write
this in the form

rt+j = (�0 + �
0Xr

t+j)
0(�0 + �

0Xr
t+j) (7.3)

= �20 + 2�0�
0Xr

t+j +X
r0
t+j��

0Xr
t+j

Assume that

Xr
t = �r + �rX

r
t�1 + et (7.4)

where et � N(0;�r), �r is a (n; 1) vector and �r and �r are (n; n) matrices.
First, consider

Lt+h�1;1 � Et+h�1[exp(�rt+h�1)] = exp(�rt+h�1)

Substituting expression (7.3) we have

Lt+h�1;1 = exp(A1 +B
0
1X

r
t+h�1 +X

r0
t+h�1C1X

r
t+h�1)

where
A1 = ��20 scalar

B1 = �2�0� a (n; 1) vector

C1 = ���0 a (n; n) matrix

To determine Lt;h we use iterative expectations. We �rst consider Lt+h�2;2

Lt+h�2;2 = exp(��20 � 2�0�0Xr
t+h�2 �Xr0

t+h�2��
0Xr

t+h�2)Et+h�2[Lt+h�1;1]

and then use expression (7.2) and simplify. This process is repeated to give, after much simpli�cation

Lt;h = exp(Ah +B
0
hXt +X

0
tChXt)

25The proof is given in Mathai, A. M. and S. B. Provost (1992, p. 40).
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where for k = 2; :::; h

Ak =
��20 + (Ak�1 +B0k�1�r + �0rCk�1�r)

+1
2
(Bk�1 + 2Ck�1�r)

0(��1r � 2Ck�1)�1(Bk�1 + 2Ck�1�r)� 1
2
ln[det(I � 2�rCk�1)]

B0k = �2�0�0 + (Bk�1 + 2Ck�1�r)0�r + 2(Bk�1 + 2Ck�1�r)0(��1r � 2Ck�1)�1Ck�1�r

and

Ck = ���0 + �0rCk�1[I + 2(��1r � 2Ck�1)�1Ck�1]�r

Appendix B: Default Intensity Modeling

The intensity function is also a quadratic function of the form

�t+j = (�0 + �
0Xr

t+j + �
0
dX

d
t+j)

0(�0 + �
0Xr

t+j + �
0
dX

d
t+j)

= �20 + 2�0�
0Xr

t+j + 2�0�
0
dX

d
t+j + 2X

r0
t+j��

0
dX

d
t+j +X

r0
t+j��

0Xr
t+j +X

d0
t+j�d�

0
dX

d
t+j

where Xd
t+j and �d are (m; 1) vectors, j = 0; 1; :::; h � 1. The sum of the interest rate plus the

intensity is given by

rt+j + �t+j = (�0 + �
0Xr

t+j)
0(�0 + �

0Xr
t+j) + (�0 + �

0Xr
t+j + �

0
dX

d
t+j)

0(�0 + �
0Xr

t+j + �
0
dX

d
t+j)

which can be written in the form

rt+j + �t+j = �20 + �
2
0 + 2(�0�

0 + �0�
0)Xr

t+j + 2�0�
0
dX

d
t+j (7.5)

+2Xr0
t+j��

0
dX

d
t+j +X

r0
t+j(��

0 + ��0)Xr
t+j +X

d0
t+j�d�

0
dX

d
t+j

De�ne

0 � �20 + �20

a scalar. Let q = n+m and de�ne

1 � [
2(�0� + �0�)

2�0�d
]
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a (q; 1) vector. De�ne


 � [ ��
0 + ��0 ��0d
�d�

0 �d�
0
d

]

a (q; q) matrix and

Xt+j � [
Xr
t+j

Xd
t+j

]

a (q; 1) vector, then

rt+j + �t+j = 0 + 
0
1Xt+j +X

0
t+j
Xt+j (7.6)

It is assumed that

Xt = �+ �Xt�1 + et (7.7)

where et � N(0;�), � is a (q; 1) vector and � and � are (q; q) matrices.
The derivation of expression (2.8) requires evaluating

Et[exp(�
h�1X
j=0

rt+j + �t+j)] (7.8)

This expression is isomorphic to expression (7.3), so the derivation follows that given in Appendix

A. Expressions (7.6) and (7.7) are similar to expressions (7.3) and (7.4) in Appendix A.

First, consider

Lt+h�1;1 � Et+h�1[exp(�rt+h�1 � �t+h�1)] = exp(�rt+h�1 � �t+h�1)

Substituting expression (7.6) we have

Lt+h�1;1 = exp(F1 +G
0
1Xt+j�1 +X

0
t+h�1H1Xt+j�1)

where
F1 = �0 scalar

G1 = �1 a (q; 1) vector

H1 = �
 a (q; q) matrix

Repeating the logic used in Appendix A, gives

Lt;h = exp(Fh +G
0
hXt +X

0
tHhXt)
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where for k = 2; :::; h

Fk =
�0 + (Fk�1 +G0k�1�+ �0Hk�1�) + 1

2
(Gk�1 + 2Hk�1�)

0(��1 � 2Hk�1)�1(Gk�1 + 2Hk�1�)
�1
2
ln[det(I � 2�Hk�1)]

G0k = �01 + (Gk�1 + 2Hk�1�)0�+ 2(Gk�1 + 2Hk�1�)0(��1 � 2Hk�1)�1Hk�1�

and

Hk = �
 + �0Hk�1[I + 2(��1 � 2Hk�1)�1Hk�1]�

The Derivation of Expression (2.10)
First, consider

Lt+h�1;1 = exp(�rt+h�1)

Substituting expression (7.3) we have

Lt+h�1;1 = exp[�(�20 + 2�0�0Xr
t+h�1 +X

r0
t+h�1��

0Xr
t+h�1)]

� exp(M1 +N
0
1X

r
t+h�1 +X

r0
t+h�1P1X

r
t+h�1)

where
M1 = ��20 scalar

N1 = �2�0� a (n; 1) vector

P1 = ���0 a (n; n) matrix

Next, consider

Lt+h�2;2 = exp(�rt+h�2 � �t+h�2)Et+h�2[Lt+h�1;1]

Using expressions (7.2) and (7.5) we have

Lt+h�2;2 = exp(M2 +N
0
2Xt+h�2 +X

0
t+h�2P2Xt+h�2) (7.9)

where

M2 � �(�20 + �20) + (M1 +N
0
1�r + �

0
rP1�r)

+
1

2
(N1 + 2P1�r)

0(��1r � 2P1)�1(N1 + 2P1�r)�
1

2
ln[det(I � 2�rP1)]

N 0
2 � [

(N1 + 2P1�r)
0�r + 2(N1 + 2P1�r)

0(��1r � 2P1)�1P1�r � 2(�0�0 + �0�0)
�2�0�0d

]
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P2 � [
�rP1�r + 2�rP1(�

�1
r � 2P1)�1P1�r � (��0 + ��0) ���0d
��d� ��d�0d

]

From this point, the analysis is similar to the derivation of expression (2.8).
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Figure 1: The Gap, Inc.: Model Spreads, Market Spreads, and Firm-Speci�c Covariates.
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Notes to Figure: The top panels show the time series of linear regression and no-arbitrage model

spreads together with the market spread for the contract with �ve-year maturity. The middle panels

show the time series of the stock price and the 30-day at-the-money �rm implied volatility. The

bottom panels show the time series of leverage, de�ned as the ratio of total liabilities to the sum of

total liabilities and market value of equity, and distance-to-default.
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Figure 2: Average Market Spreads, VIX and SP500 Returns.
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Notes to Figure: We show the time series of the average market spread for the contract with �ve-year

maturity, the VIX, and the one-year trailing S&P 500 return.
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Figure 3: Sensitivity of Market Spread to VIX and Distance-To-Default. Various Models.
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Notes to Figure: We show the sensitivities of the market spread to the VIX and distance-to-default

for various models. The sensitivities are based on the contract with �ve-year maturity. Level

indicates the linear regression model where the dependent variable is the level of the spreads,

NA indicates the no-arbitrage model, CO indicates the Cochrane-Orcutt model, and NA-AR(1)

indicates the no-arbitrage model with AR(1) errors. The reported numbers indicate the change in

spreads (in basis points) for a 1% change in VIX, and the change in spreads (in basis points) for

a one unit change in distance-to-default. The covariate speci�cation includes two stochastic term

structure factors, the VIX, and distance-to-default.
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Figure 4: Alternative Covariate Speci�cation: Factor Sensitivities.
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Notes to Figure: We show the sensitivities of the market spread to di¤erent factors. The sensitivities

are based on the contract with �ve-year maturity. The y-axis indicates the model for which the

sensitivity is computed. SP500 stands for the S&P 500 return, LEV stands for �rm leverage, FIV

stands for the �rm�s implied option volatility, and LIQ indicates the liquidity measure. For SP500,

VIX, LEV and FIV, the reported numbers indicate the change in spread (in basis points) for a

1% change in the corresponding covariate. For LIQ, the numbers indicate the change in spread (in

basis points) for a one unit change in LIQ. The covariate speci�cation includes two stochastic term

structure factors, the one-year trailing return on the S&P500, the VIX, �rm leverage, option-implied

volatility, and liquidity.
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Figure 5: Sensitivity of Market Spread to VIX and Distance-to-Default. Various Models, Monthly

Frequency.
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Notes to Figure: We show the sensitivities of the market spread to the VIX and distance-to-default

(DTD) for various models using monthly data. The sensitivities are based on the contract with �ve-

year maturity. The y-axis denotes the model for which the sensitivity is computed. Level indicates

the linear regression model where the dependent variable is the level of the spreads, NA indicates

the no-arbitrage model, CO indicates the Cochrane-Orcutt model, and NA-AR(1) indicates the

no-arbitrage model with AR(1) errors. The reported numbers indicate the change in spreads (in

basis points) for a 1% change in VIX, and the change in spreads (in basis points) for a one unit

change in distance-to-default.
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Mean Std.

1 Yr (bps) 156.3 227.5

3 Yr (bps) 176.5 215.1

5 Yr (bps) 196.7 197.2

DTD 10.9 5.2

LEV 22.7% 6.1%

FIV 40.8% 15.1%

LIQ 10.8 5.9

No Arbitrage

Maturity R‐2 RMSE(bps) RMSE(bps)

1 Yr  85.4 88.4 56.9

3 Yr 85.3 83.9 51.5

5 Yr 84.6 78.6 52.0

Table 1: The Gap, Inc.: Summary Statistics

Panel A: Descriptive Statistics

Panel B: R‐squares (%) and RMSEs

Linear Regression

Notes: Panel A reports averages and standard deviations for the market spreads for 1, 3, and 5 year maturities,

distance to default (DTD), leverage (LEV), 30 day option implied volatility (FIV), and the number of quote

contributors (LIQ) for The Gap, Inc. Panel B reports the R‐square (R‐2) from the linear regression, and the

RMSEs in basis points from the linear regression and no‐arbitrage models. The data are for the period January

1, 2002 to March 7, 2008.



Rating NA

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. R2 % RMSE  RMSE

Sun Microsystems BB 116.1 64.3 7.8 3.8 29.8    8.3      54.1    19.7    10.8 4.5 64.3 35.2 32.9      

Honeywell Intl  A 33.3 22.4 10.6 4.1 38.5  4.6    30.6  11.5  10.9 4.3 73.8 11.4 11.2    

Fortune Brands  BBB 41.4 27.6 11.7 2.4 35.7  7.1    22.3  5.8    7.7 4.9 40.2 21.9 22.3    

du Pont A 22.6 9.7 11.0 3.4 36.1  2.8    24.3  7.5    11.2 5.1 62.0 6.1 6.6      

Eastman Kodak B 174.4 77.4 6.0 1.9 57.5  6.0    34.7  6.7    13.3 5.8 54.5 50.4 64.6    

Goodrich Corp BBB 85.3 66.5 7.3 3.2 53.1  9.0    32.5  10.0  12.4 5.4 79.5 30.7 28.0    

Ingersoll Rand A 41.8 20.4 9.1 2.9 38.6  8.3    30.1  7.7    10.2 4.0 59.3 12.3 12.1    

Altria Gp  BBB 110.4 73.8 11.5 4.2 33.3  8.3    26.1  8.0    12.1 5.6 73.3 40.7 44.1    

RadioShack  BB 102.6 55.6 7.1 2.5 26.5  6.1    41.7  12.6  11.1 6.1 69.9 31.2 38.3    

Wyeth A 43.7 33.1 11.5 4.6 25.5  3.7    27.5  9.2    11.9 5.9 52.3 23.9 24.2    

Kroger  BBB 66.0 25.2 7.7 2.8 51.7  5.4    28.9  7.2    12.5 6.8 64.1 15.7 13.2    

Gen Mills  BBB 43.3 19.9 12.1 3.7 40.5  4.5    19.3  5.5    10.3 4.9 83.8 8.1 8.5      

J C Penney  BBB 247.8 217.6 7.0 3.3 53.0  14.7  39.6  13.6  8.0 4.6 82.9 67.9 54.7    

Caterpillar  A 31.2 15.7 6.7 1.7 54.5  5.5    29.4  6.8    10.5 4.3 73.5 8.0 8.3      

Deere  A 37.1 20.8 6.2 1.4 60.0  5.8    30.5  7.2    10.3 4.1 68.1 11.3 10.5    

Dow Chemical  A 54.1 38.2 9.0 3.0 44.4  4.2    29.1  8.9    13.2 6.2 89.7 13.0 12.1    

Lockheed Martin BBB 42.7 22.2 13.7 5.0 43.5  7.1    26.1  9.2    10.3 5.3 79.5 8.4 11.4    

Cardinal Health BBB 43.5 22.8 11.6 4.4 32.1  5.8    28.0  8.9    11.2 7.1 44.7 18.3 18.7    

Intl Paper BBB 70.1 24.2 7.3 1.6 55.7  3.5    27.3  7.5    13.7 6.5 60.8 14.5 16.2    

Motorola BBB 122.1 114.6 7.8 3.9 34.6  7.0    42.6  15.9  12.8 4.5 80.4 50.1 41.3    

Sara Lee BBB 37.6 15.7 10.2 2.7 42.0  3.6    21.8  4.9    9.5 5.8 49.5 11.6 12.8    

Halliburton BBB 124.0 160.9 8.2 3.5 35.0  14.5  41.1  15.8  12.2 5.6 85.7 60.5 42.7    

Rohm & Haas A 35.8 14.0 9.8 2.9 40.3  6.0    27.8  7.5    10.2 5.0 38.9 9.7 9.9      

Cl Channel Comms BB 182.7 152.2 8.4 3.7 36.8  3.2    33.4  17.2  13.4 6.6 62.3 99.5 120.3  

Amern Elec Power BBB 88.5 104.5 8.2 4.0 68.8  5.5    24.0  12.1  12.0 4.4 63.6 64.8 50.7    

Constellation Engy  BBB 72.5 72.8 9.4 4.1 61.2  6.2    26.0  9.2    11.6 5.9 58.8 48.5 45.7    

Alcoa  A 35.1 17.7 7.4 2.1 41.1  4.8    33.8  8.5    11.4 5.9 36.2 15.0 15.8    

Northrop Grumman BBB 52.9 37.0 12.7 5.5 47.9  7.4    23.0  8.3    10.2 5.5 78.0 16.0 13.0    

Raytheon BBB 73.0 54.0 11.9 5.7 47.2  10.2  27.1  12.1  11.7 5.0 92.1 13.5 11.9    

Campbell Soup A 29.7 12.1 12.9 4.5 32.5  4.1    22.4  6.9    9.9 5.0 58.2 6.8 6.5      

Whirlpool BBB 58.6 25.5 6.8 1.9 58.4  3.6    33.5  7.4    11.7 6.7 19.7 17.1 18.2    

Walt Disney A 48.2 33.2 9.0 3.5 34.0  5.2    29.7  10.6  13.4 6.1 81.7 14.8 13.2    

Loews A 56.7 37.2 10.8 4.7 80.8  6.9    25.1  7.4    10.8 5.8 84.7 14.8 14.2    

Hewlett Packard A 45.0 34.6 10.0 4.5 33.4  5.4    37.1  13.7  11.3 5.0 83.7 13.8 12.2    

Baxter Intl  A 37.1 19.3 12.6 5.9 26.1  8.2    27.1  9.0    10.7 5.0 75.9 9.3 9.2      

Arrow Electrs  BBB 161.4 125.9 6.4 3.3 56.5  8.6    38.8  10.6  12.7 6.2 78.7 56.3 43.2    

Omnicom Gp  BBB 64.1 62.8 11.9 4.7 41.7  4.4    28.6  14.1  10.9 4.2 74.2 32.3 23.8    

Sherwin Williams A 45.3 24.1 11.8 3.7 31.8  3.7    29.3  9.5    9.8 5.5 65.6 13.0 13.0    

Wells Fargo AA 25.5 15.1 10.2 3.2 79.3  1.8    21.9  8.6    10.3 4.7 60.0 9.9 8.7      

Weyerhaeuser BBB 70.4 31.2 7.3 2.2 56.2  6.1    29.5  8.9    13.1 6.3 54.5 22.2 23.1    

Computer Sciences A 60.2 32.1 7.6 2.9 43.6  4.8    36.6  12.5  12.7 6.2 29.7 27.2 28.4    

McDonalds A 26.7 11.3 11.2 4.4 26.3  5.7    26.4  7.5    10.9 5.5 64.4 7.1 7.4      

Supervalu B 146.2 79.8 7.3 3.1 59.1  10.0  29.6  8.3    11.5 6.3 68.3 40.8 47.0    

Target A 29.3 18.9 9.0 3.3 33.0  4.1    31.7  10.3  9.3 4.3 70.3 10.9 11.0    

Liz Claiborne BBB 72.4 55.3 12.0 3.7 25.0  5.7    28.8  10.0  7.1 3.8 53.2 36.5 25.1    

Burl Nthn Santa Fe BBB 37.7 16.2 9.2 2.6 54.1  8.6    26.3  5.1    10.7 5.2 64.4 9.5 9.7      

Centex BBB 114.7 97.4 3.9 2.2 67.0  4.1    43.2  13.0  14.2 7.2 57.5 68.2 79.9    

Wal Mart Stores  AA 17.7 7.7 12.9 2.4 24.0  6.3    24.1  8.1    10.5 4.4 61.6 4.8 5.1      

ConAgra Foods  BBB 45.6 16.8 11.9 3.5 42.7  5.1    21.0  5.2    11.3 5.6 56.5 9.7 10.5    

Southwest Airls BBB 61.5 32.9 8.9 2.4 33.0  7.8    34.7  9.5    12.9 6.3 69.8 15.5 15.9    

The Gap  BB 196.7 197.2 10.9 5.2 22.7  6.1    40.8  15.1  10.8 5.9 84.6 78.6 52.0    

Amern Express A 39.2 29.8 7.3 3.3 69.3  5.1    28.1  11.8  10.6 4.8 53.4 21.2 18.8    

Chubb A 35.3 24.9 11.2 5.8 67.0  4.5    24.9  8.5    10.2 4.2 74.7 18.1 20.1    

Table 2: Firm‐by‐Firm Descriptive Statistics and Model Fit.

Panel A Panel B

Firm‐Specific Descriptive Statistics Model Fit (5 Yr)

Linear Regr.Mkt Spr. (5 Yr) DTD LEV (%) FIV (%) LIQ



Rating NA

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. R2 % RMSE  RMSE

Newell Rubbermaid BBB 51.8 17.9 8.8 2.6 40.7    3.7      26.6    6.8      11.5 6.0 41.6 12.6 12.8      

CSX BBB 55.6 24.5 7.2 2.6 62.2  8.7    30.8  7.8    11.4 5.8 61.5 14.6 15.2    

Ltd Brands BBB 79.7 55.2 9.5 2.8 24.6  7.0    36.5  11.8  11.7 6.3 47.1 39.2 35.2    

Norfolk Sthn BBB 44.2 21.3 6.7 2.7 55.6  8.5    32.1  8.4    10.2 5.5 65.6 10.5 10.4    

Ctrywde Home Lns  A 98.5 152.4 5.7 3.9 87.7  3.8    40.3  20.8  11.9 6.4 54.9 110.5 85.1    

Dominion Res  BBB 57.6 32.7 9.7 3.6 59.7  3.4    20.9  8.4    11.6 5.6 66.1 20.1 20.3    

Verizon Comms  BBB 67.8 63.1 8.4 4.3 50.1  3.6    26.0  10.7  6.8 4.0 62.8 41.0 32.1    

Temple Inland  BBB 103.8 45.1 5.0 1.7 82.6  5.2    30.4  8.1    10.8 6.8 71.0 24.9 26.1    

Home Depot  A 26.7 26.9 14.6 5.3 17.4  7.9    30.1  10.8  9.3 5.0 52.2 19.6 15.1    

Amern Intl Gp  AA 33.0 26.2 7.1 3.1 77.7  7.4    25.9  10.2  12.6 5.7 55.5 18.6 17.6    

Anadarko Petr BBB 46.9 21.4 7.7 2.8 47.5  9.7    33.8  8.0    10.6 5.3 46.7 12.6 12.3    

Carnival A 66.5 54.2 9.4 3.0 27.8  4.1    32.2  11.1  11.3 4.7 71.6 24.5 23.2    

MBIA Ins  AAA 66.0 82.5 5.6 2.4 72.7  9.3    37.3  26.6  11.8 6.2 57.5 54.9 32.4    

Safeway BBB 62.2 18.3 6.5 2.8 46.4  8.9    31.2  6.9    13.4 7.0 51.1 13.1 13.2    

Autozone  BBB 77.5 40.2 9.5 2.4 33.2  4.8    29.8  8.0    11.4 7.1 34.7 19.7 22.7    

Jones Apparel BBB 105.7 66.2 7.5 2.2 30.9  5.7    33.2  10.2  11.1 6.2 66.8 38.3 48.2    

Time Warner BBB 102.5 116.2 8.7 4.6 41.9  9.1    34.3  17.9  10.7 6.6 68.2 69.6 48.4    

Boston Scientific  BBB 71.8 67.3 8.2 2.8 20.8  12.6  39.6  10.3  10.8 6.3 40.8 46.8 46.8    

Tyson Foods  BB 104.1 42.8 5.8 2.5 63.1  8.7    36.1  10.8  13.5 6.3 44.2 30.1 30.4    

ACE A 67.0 46.8 10.2 4.1 77.4  2.9    31.8  11.5  12.1 6.3 75.1 20.4 18.6    

Transocean BBB 57.9 34.1 7.3 3.2 26.9  11.9  41.2  9.4    9.1 4.3 73.5 15.5 15.6    

Allstate A 33.1 20.9 13.8 4.3 78.9  1.8    22.1  7.7    9.9 5.0 76.7 9.6 10.9    

Eastman Chem BBB 67.1 29.4 8.4 3.1 54.2  7.7    26.7  6.3    12.7 6.9 65.0 16.4 15.5    

McKesson  BBB 68.0 41.7 11.7 4.5 51.5  4.2    29.5  8.2    10.6 5.8 75.2 15.2 15.1    

Electr Data Sys  BB 135.1 90.2 7.7 4.7 43.7  11.7  36.8  15.7  12.4 5.3 66.0 53.3 50.0    

Marriott Intl BBB 65.5 41.3 14.0 3.3 30.7  4.8    30.5  10.5  11.1 5.4 49.5 17.3 16.3    

Sempra Engy BBB 68.2 56.6 9.4 3.6 67.8  6.4    25.5  9.2    11.3 5.2 73.8 28.1 21.3    

Devon Engy BBB 62.8 48.8 7.2 2.4 46.2  11.3  34.2  7.8    11.3 5.7 66.2 23.2 19.2    

Visteon CCC 440.1 304.4 2.3 1.6 87.4  4.5    56.6  13.9  11.4 5.2 54.7 203.0 178.6  

Aetna A 75.8 72.6 10.4 3.2 71.8  11.7  34.1  10.0  10.2 4.7 72.5 30.7 24.3    

Table 2 Continued

Panel A Panel B

Firm‐Specific Descriptive Statistics Model Fit (5 Yr)

Notes: we report averages and standard deviations for the market spreads for 1, 3, and 5 year maturities, distance to default (DTD), leverage

(LEV), 30 day option implied volatility (FIV), and number of contributors (LIQ) for the eighty‐three firms in the sample. For each firm, we also

report the R‐square (R‐2) from the linear regression, and the RMSEs in basis points from the linear regression and no‐arbitrage models. The

data are for the period January 1, 2002 to March 7, 2008. The covariates include two stochastic term structure factors, the VIX, and distance‐

to‐default. NA stands for the no‐arbitrage model.

Mkt Spr. (5 Yr) DTD LEV (%) FIV (%) LIQ Linear Regr.



Factor 1 Factor 2

δ0 0.03859

δ1 0.18497

δ2 0.23072

ρ 0.99941 0.99781

σ x 100 0.00712 0.00705

μ/(1‐ρ) ‐0.06031 ‐0.04994

6 Months 1 Year  2 Year  3 Year  4 Year  5 Year 7 Year 10 Year

RMSE  8.99 5.50 8.10 6.60 5.13 4.74 4.57 8.67

ME‐Std 1.25 1.15 2.30 4.41 1.60 2.50 2.90 1.12

ρ σ x 100 μ/(1‐ρ)

0.9995 0.45214 0.383

ρ μ/(1‐ρ) σ x 100

Mean 0.998 9.010 27.814

2.5% 0.984 ‐1.814 12.832

25% 0.999 3.586 17.973

50% 0.999 6.853 22.252

75% 0.999 13.341 30.711

97.5% 0.999 31.321 68.871

Std Dev 0.004 9.658 14.663

Notes: Panel A reports parameter estimates for the risk‐free term structure factors. The two latent risk‐free

term structure factors are estimated using the Unscented Kalman Filter. The factor dynamics and short rate

loadings for the risk‐free term structure are estimated using the 6 month Libor rate, and 1, 2, 3, 4, 5, 7 and 10

year maturity swap rates. Panel B reports RMSEs and measurement error standard deviations for the risk free

term structure. ME‐Std in Panel B indicates the Measurement Error Standard Deviation and RMSE indicates the

Root Mean Squared Error. Panel C reports the factor dynamics for the VIX, which are estimated by fitting a three

factor (two term structure factors and the VIX) model to the term structure of CDX Index spreads. Panel D

reports the estimated parameter distribution for the distance‐to‐default dynamic for the no‐arbitrage model. 

Table 3: Risk‐Free Term Structure and Factor Estimates

Panel A: Risk‐Free Term Structure
Factor Loadings and Dynamics

Panel B: Risk Free Term Structure Model RMSE (bps) and Measurement Error Standard Deviation (bps)

Panel C: VIX Dynamics

Panel D: DTD Dynamics



1 Yr 3 Yr 5 Yr

Level 68.9 66.9 63.6

Diff 1.0 1.7 2.6

CO 1.4 1.8 2.7

1 Yr 3 Yr 5 Yr

Level 31.2 29.8 29.3

Diff 6.3 4.4 3.9

CO 6.4 4.4 3.9

NA 26.7 25.4 27.1

NA‐AR(1) 6.3 4.4 3.9

Table 4: Average RMSEs and R‐Squares. 

Panel A: Average R‐squares (%)

Panel B: Average RMSEs (bps)

Notes: We report the average R‐squares for the regression models. In addition, the table

includes the average RMSEs for the linear regression based models as well as the no‐

arbitrage models. Level indicates the regression model where the dependent variable is the

level of credit spreads, Diff indicates the regression model where the dependent variable is

the change in credit spreads, CO indicates the Cochrane‐Orcutt regression model, NA

indicates the no‐arbitrage model without autocorrelated errors, and NA‐AR(1) indicates the

no‐arbitrage model with autocorrelated errors. The covariate specification includes two

stochastic term structure factors, the VIX, and distance‐to‐default.



Level NA CO NA‐AR(1) Level NA CO NA‐AR(1) Level NA CO NA‐AR(1)

Mean 3.55 3.61 ‐4.42 ‐0.79 3.94 3.53 ‐3.11 ‐0.53 5.76 3.15 ‐2.70 ‐0.37

Std Dev 23.32 8.99 7.90 6.40 18.50 8.92 7.01 6.03 17.36 8.39 5.26 5.77

Level NA CO NA‐AR(1) Level NA CO NA‐AR(1) Level NA CO NA‐AR(1)

Mean ‐0.72 2.81 ‐3.67 0.71 1.39 2.26 ‐2.35 0.90 4.47 1.70 ‐1.47 0.92

Std Dev 20.21 15.32 7.90 7.60 17.84 11.96 9.11 6.62 18.19 9.31 7.34 6.28

Level NA CO NA‐AR(1) Level NA CO NA‐AR(1) Level NA CO NA‐AR(1)

Mean 3.03 1.49 0.15 0.08 3.01 1.56 0.15 0.10 2.85 1.53 0.19 0.11

Std Dev 3.55 1.76 0.40 0.35 3.59 1.78 0.37 0.34 3.43 1.74 0.38 0.34

Level NA CO NA‐AR(1) Level NA CO NA‐AR(1) Level NA CO NA‐AR(1)

Mean ‐8.16 ‐8.50 ‐1.94 ‐1.77 ‐7.60 ‐8.05 ‐1.73 ‐1.82 ‐7.09 ‐7.40 ‐1.78 ‐1.73

Std Dev 15.33 17.00 5.98 6.05 12.11 15.63 5.10 5.56 10.55 13.53 4.71 5.19

Panel B: Term‐Structure Factor 2

Table 5: Sensitivities for Different Factors.

Panel A: Term‐Structure Factor 1

One‐Year Maturity Three‐Year Maturity Five‐Year Maturity

One‐Year Maturity Three‐Year Maturity Five‐Year Maturity

Panel C: VIX

One‐Year Maturity Three‐Year Maturity Five‐Year Maturity

Panel D: Distance to Default

One‐Year Maturity Three‐Year Maturity Five‐Year Maturity

Notes: We report the cross‐sectional average and standard deviation of the sensitivities for each factor from

different models. The reported sensitivities indicate the change in spreads (in basis points) for a 1% change in

the covariates in Panel A through C, and the change in spreads (in basis points) for one unit change in distance‐

to‐default in Panel D. The covariate specification includes two stochastic term structure factors, the VIX, and

distance‐to‐default.



Constant T‐1 T‐2 VIX DTD 

Level 71.1% 67.5% 65.1% 89.2% 91.6%

Diff 1.2% 14.5% 8.4% 36.1% 38.6%

CO 8.4% 21.7% 15.7% 38.6% 41.0%

Level 71.1% 48.2% 54.2% 84.3% 81.9%

Diff 1.2% 4.8% 4.8% 19.3% 33.7%

CO 47.0% 10.8% 14.5% 25.3% 41.0%

Level 48.2% 30.1% 37.3% 75.9% 57.8%

Diff 3.6% 34.9% 36.1% 44.6% 31.3%

CO 30.1% 33.7% 39.8% 59.0% 36.1%

Level 65.1% 69.9% 73.5% 90.4% 89.2%

Diff 69.9% 81.9% 69.9% 91.6% 72.3%

Notes: We report the percentage firms with significant factor loadings at the 5% level

using daily, weekly, monthly, and yearly time series data. Level indicates the linear

regression model with the level of credit spreads as the dependent variable, Diff indicates

the significance for the linear regresson model with the spread difference as the

dependent variable, CO indicates the Cochrane‐Orcutt model, NA indicates the no‐

arbitrage model, and NA‐AR(1) indicates the no‐arbitrage model with AR(1) errors. All

results are for the 5‐year contract. All standard errors are adjusted for autocorrelation

using a Newey‐West correction. 

Table 6: Percentage Firms with Significant Loadings on Covariates 

Different Data Frequencies

Panel A: Daily

Panel B: Weekly

Panel C: Monthly

Panel D: Yearly



1 Yr 3 Yr 5 Yr 1 Yr 3 Yr 5 Yr

Level 69.2 67.2 63.9 Level 31.6 29.7 29.2

Diff 5.1 7.2 8.3 Diff 13.6 10.5 10.1

CO 8.4 9.3 9.6 CO 13.3 10.3 9.9

NA 27.0 25.5 28.1

NA‐AR(1) 13.9 11.2 10.9

1 Yr 3 Yr 5 Yr 1 Yr 3 Yr 5 Yr

Level 71.6 69.1 65.6 Level 29.5 28.4 28.1

Diff 22.2 23.9 23.3 Diff 20.6 18.7 18.7

CO 34.1 34.0 31.7 CO 19.5 17.7 17.9

NA 26.1 24.9 27.8

NA‐AR(1) 19.5 18.9 19.6

1 Yr 3 Yr 5 Yr 1 Yr 3 Yr 5 Yr

Level 69.4 67.7 64.1 Level 29.0 27.8 27.9

Diff 55.0 55.8 54.4 Diff 35.6 34.4 34.4

Notes: We report the average R‐squares for the regression models using weekly and monthly data as well as for

yearly differences. In addition, the table includes the average RMSEs for the linear regression based models as

well as the no‐arbitrage models. Level indicates the regression model where the dependent variable is the level

of credit spreads, Diff indicates the regression model where the dependent variable is the change in credit

spreads, CO indicates the Cochrane‐Orcutt regression model, Yearly Diff. indicates the regression model where

the dependent variable is the yearly change in credit spreads, NA indicates the no‐arbitrage model without

autocorrelated errors, and NA‐AR(1) indicates the no‐arbitrage model with autocorrelated errors. The covariate

specification includes two stochastic term structure factors, the VIX, and distance‐to‐default.

Table 7: Average RMSEs and R‐Squares. Different Data Frequencies.

Panel A: Average R‐squares, Weekly (%) Panel B: Average RMSEs, Weekly (bps)

Panel C: Average R‐squares, Monthly (%) Panel D: Average RMSEs, Monthly (bps)

Panel E: Average R‐squares, Yearly (%) Panel F: Average RMSEs, Yearly (bps)


